ProtoGS:基于三维高斯原型的高效高质量渲染
ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes

原始链接: https://arxiv.org/abs/2503.17486

高正庆等人提出了一种新颖的方法ProtoGS,用于提高三维高斯散射(3DGS)渲染的效率和质量。针对3DGS需要大量高斯函数的挑战,ProtoGS学习高斯原型来表示基本图元,显著减少了高斯函数的数量,同时保持了视觉保真度。与可能降低渲染质量的基于压缩的方法不同,ProtoGS直接利用这些原型进行渲染,并利用由此产生的重建损失来指导原型学习过程。为了提高训练过程中的内存效率,该方法利用结构光重建(SfM)点作为锚点来分组高斯图元。在每个组内,K均值聚类得出高斯原型,并同时优化锚点和原型。在真实世界和合成数据集上的实验表明,ProtoGS通过显著减少高斯函数的数量并实现高速渲染,同时保持甚至提高渲染质量,优于现有方法。这使得ProtoGS成为在轻量级设备上部署3DGS的有前景的解决方案。

Hacker News 最新 | 往期 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 ProtoGS:使用 3D 高斯原型进行高效高质量渲染 (arxiv.org) 7 分,作者 PaulHoule,33 分钟前 | 隐藏 | 往期 | 收藏 | 讨论 加入我们,参加 6 月 16-17 日在旧金山举办的 AI 初创公司学校! 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请 YC | 联系我们 搜索:

原文

View a PDF of the paper titled ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes, by Zhengqing Gao and 7 other authors

View PDF HTML (experimental)
Abstract:3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required, posing challenges for deployment on lightweight devices. Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency. To overcome these limitations, we propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality. Our method directly uses Gaussian prototypes to enable efficient rendering and leverage the resulting reconstruction loss to guide prototype learning. To further optimize memory efficiency during training, we incorporate structure-from-motion (SfM) points as anchor points to group Gaussian primitives. Gaussian prototypes are derived within each group by clustering of K-means, and both the anchor points and the prototypes are optimized jointly. Our experiments on real-world and synthetic datasets prove that we outperform existing methods, achieving a substantial reduction in the number of Gaussians, and enabling high rendering speed while maintaining or even enhancing rendering fidelity.
From: Zhengqing Gao [view email]
[v1] Fri, 21 Mar 2025 18:55:14 UTC (4,677 KB)
[v2] Tue, 25 Mar 2025 13:03:48 UTC (4,677 KB)
[v3] Tue, 8 Apr 2025 12:19:01 UTC (4,677 KB)
联系我们 contact @ memedata.com