(评论)
(comments)

原始链接: https://news.ycombinator.com/item?id=43417511

Zacharyhuang 发布了一篇教程,解释说 LLM 智能体(例如 OpenAI 智能体、Pydantic AI、AutoGPT 和 PerplexityAI)本质上是具有循环和分支的图。他提供了来自 OpenAI 智能体、Pydantic AI 和 Langchain 的代码示例链接,以说明这种底层结构。这篇教程旨在通过揭示其简单的基于图的架构来消除围绕 LLM 智能体的炒作。Czbond 感谢作者的深刻解释以及将其免费提供,无需付费墙的决定。


原文
Hacker News new | past | comments | ask | show | jobs | submit login
LLM Agents Are Simply Graph – Tutorial for Dummies (zacharyhuang.substack.com)
5 points by zh2408 1 hour ago | hide | past | favorite | 3 comments










Hey folks! I just posted a quick tutorial explaining how LLM agents (like OpenAI Agents, Pydantic AI, Manus AI, AutoGPT or PerplexityAI) are basically small graphs with loops and branches. For example:

OpenAI Agents: for the workflow logic: https://github.com/openai/openai-agents-python/blob/48ff99bb...

Pydantic Agents: organizes steps in a graph: https://github.com/pydantic/pydantic-ai/blob/4c0f384a0626299...

Langchain: demonstrates the loop structure: https://github.com/langchain-ai/langchain/blob/4d1d726e61ed5...

If all the hype has been confusing, this guide shows how they actually work under the hood, with simple examples. Check it out!

https://zacharyhuang.substack.com/p/llm-agent-internal-as-a-...



Thank you - really interesting looking read, thanks for crafting the deep explanation, with links to actual internal code examples. Also, thanks for not putting it behind the Medium paywall


Thank you!!






Join us for AI Startup School this June 16-17 in San Francisco!


Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact



Search:
联系我们 contact @ memedata.com