急刹车事件作为道路路段事故风险的指标
Hard-braking events as indicators of road segment crash risk

原始链接: https://research.google/blog/hard-braking-events-as-indicators-of-road-segment-crash-risk/

传统的交通安全分析依赖于已发生的事故报告,但这种“滞后”数据不常出现且积累缓慢,阻碍了主动风险预测。本研究探讨了“急刹车事件”(HBE)——车辆显著减速的情况——作为潜在事故风险更频繁且可扩展的指标。 研究人员分析了来自弗吉尼亚州和加利福尼亚州的事故数据,以及来自Android Auto的匿名HBE数据。他们发现,较高的HBE频率与更高的事故率之间存在统计上的显著相关性。由于HBE可以通过互联车辆技术轻松获得,因此它们为安全评估提供了一个有价值的“领先”指标,能够进行全网络分析,并比仅依赖历史事故统计更快地识别高风险路段。这种方法有望带来更及时有效的交通安全改进。

## 紧急制动与道路安全:摘要 谷歌的研究强调了紧急制动数据的新用途——识别危险路段,而不仅仅是识别危险驾驶员。传统上,保险公司将频繁的紧急制动作为衡量驾驶行为的关键指标,并提供工具(如带有音频警报的应用程序)来鼓励更安全的驾驶。然而,这项研究表明紧急制动也可以定位需要改进的问题性道路设计。 Hacker News上的讨论表明,这对于保险行业来说并非新事物,但关注点的转变*至*基础设施是新的。虽然评论员承认驾驶技能起作用,但他们指出数据可以揭示持续危险的区域,例如设计不良的立交桥(特别提到了旧金山湾区880/101立交桥)。 存在一些怀疑,指出交通部门已经从TomTom和Inrix等公司购买类似的数据,并且物理限制常常阻碍改进。然而,通过谷歌和苹果设备进行大规模数据收集的潜力可以提供对道路风险更全面的了解,并可能激励基础设施的改变。
相关文章

原文

Traffic safety evaluation has traditionally relied on police-reported crash statistics, often considered the "gold standard" because they directly correlate with fatalities, injuries, and property damage. However, relying on historical crash data for predictive modeling presents significant challenges, because such data is inherently a "lagging" indicator. Also, crashes are statistically rare events on arterial and local roads, so it can take years to accumulate sufficient data to establish a valid safety profile for a specific road segment. This sparsity paired with inconsistent reporting standards across regions complicates the development of robust risk prediction models. Proactive safety assessment requires "leading" measures: proxies for crash risk that correlate with safety outcomes but occur more frequently than crashes.

In "From Lagging to Leading: Validating Hard Braking Events as High-Density Indicators of Segment Crash Risk", we evaluate the efficacy of hard-braking events (HBEs) as a scalable surrogate for crash risk. An HBE is an instance where a vehicle’s forward deceleration exceeds a specific threshold (-3m/s²), which we interpret as an evasive maneuver. HBEs facilitate network-wide analysis because they are sourced from connected vehicle data, unlike proximity-based surrogates like time-to-collision that frequently necessitate the use of fixed sensors. We established a statistically significant positive correlation between the rates of crashes (of any severity level) and HBE frequency by combining public crash data from Virginia and California with anonymized, aggregated HBE information from the Android Auto platform.

联系我们 contact @ memedata.com