展示HN:EuConform – 离线优先的欧盟人工智能法案合规工具(开源)
Show HN: EuConform – Offline-first EU AI Act compliance tool (open source)

原始链接: https://github.com/Hiepler/EuConform

## EuConform:欧盟人工智能法案合规工具 - 摘要 EuConform 是一款 100% 离线、开源工具,旨在协助符合欧盟人工智能法案的要求。它帮助用户对人工智能风险等级进行分类(第 5 条和第 6 条),使用 CrowS-Pairs 方法检测算法偏差,并生成技术文档(符合附录 IV)——所有这些都在浏览器环境中完成。 主要功能包括交互式风险评估问答、利用 Llama 和 Mistral 等模型进行偏差检测(可选本地 Ollama 集成以提高准确性),以及 GDPR/WCAG 2.2 AA 可访问性。该工具优先考虑隐私,不进行任何跟踪,数据始终保留在客户端。 **重要声明:** EuConform 仅提供*技术指导*,**不**提供法律建议。法律合规性评估需要经通知机构和专业的法律咨询。 该项目使用现代 Web 技术(Next.js、TypeScript)构建,并采用双重许可(MIT/EUPL-1.2),以实现广泛的可用性。人工智能法案的高风险义务将于 2027 年开始生效,因此持续验证指南至关重要。

## EuConform:开源欧盟人工智能法案合规工具 一名开发者创建了“EuConform”,一款开源、离线优先的工具,旨在帮助评估即将到来的欧盟人工智能法案的合规性。该工具专注于将法案的要求转化为技术检查,包括风险分类、偏见评估(使用CrowS-Pairs)、以及自动化报告生成——所有这些都在本地浏览器中使用Ollama运行,避免云依赖。 该项目引发了关于人工智能在开发中作用的讨论,一些人质疑披露在编码中使用的AI辅助,而另一些人则为其作为生产力助推器的使用辩护。 围绕项目名称“EuConform”也存在争论,一些人认为它让人联想到奥威尔的《1984》。 进一步的讨论扩展到关于法规对创新影响的更广泛讨论,一些人对欧盟官僚主义感到沮丧,另一些人则强调了消费者保护和公平竞争的重要性。该工具旨在为应对复杂的人工智能监管环境提供一种实用方法。
相关文章

原文

🇪🇺 Open-Source EU AI Act Compliance Tool

Classify risk levels • Detect algorithmic bias • Generate compliance reports
100% offline • GDPR-by-design • WCAG 2.2 AA accessible

CI Status Coverage MIT License EUPL License

Node.js TypeScript Next.js Biome


Important

Legal Disclaimer: This tool provides technical guidance only. It does not constitute legal advice and does not replace legally binding conformity assessments by notified bodies or professional legal consultation. Always consult qualified legal professionals for compliance decisions.


EuConform Interface

🚀 Quick Start · 📖 Docs · 🌐 Deploy · 🐛 Report Bug


Feature Description
🎯 Risk Classification Interactive quiz implementing EU AI Act Article 5 (prohibited), Article 6 + Annex III (high-risk)
📊 Bias Detection CrowS-Pairs methodology with log-probability analysis for scientific bias measurement
📄 PDF Reports Generate Annex IV-compliant technical documentation entirely in-browser
🌐 100% Offline All processing happens client-side using transformers.js (WebGPU)
🔒 Privacy-First Zero tracking, no cookies, no external fonts – your data never leaves your browser
🌙 Dark Mode Beautiful glassmorphism design with full dark mode support
Accessible WCAG 2.2 AA compliant with full keyboard navigation
🌍 Multilingual English and German interface

Want to try it without installation? Click the 🌐 Deploy link above to start your own instance on Vercel.

  • Node.js ≥ 18
  • pnpm ≥ 10 (recommended) or npm/yarn
# Clone the repository
git clone https://github.com/Hiepler/EuConform.git
cd EuConform

# Install dependencies
pnpm install

# Start development server
pnpm dev

# Open http://localhost:3001

Using with Local AI Models (Optional)

For enhanced bias detection with your own models:

  1. Install Ollama: Download from ollama.ai
  2. Pull a model: ollama pull llama3.2
  3. Start Ollama: ollama serve
  4. Select "Ollama" in the web interface

Supports Llama, Mistral, and Qwen variants with automatic log-probability detection.

Warning

Vercel / Cloud Deployment: This feature requires running EuConform locally (pnpm dev).

Legal Foundation & Compliance Coverage

Tool Coverage:

EU AI Act Reference Coverage
Art. 5 Prohibited AI Systems (red-flag indicators)
Art. 6–7 + Annex III Risk Classification (8 high-risk use cases)
Art. 9–15 Risk Management, Data Governance, Transparency, Human Oversight
Art. 10 (Para. 2–4) Bias/Fairness metrics with reproducible test protocols
Recital 54 Protection against discrimination
Annex IV Technical Documentation (report structure)

Implementation Timeline: Obligations become effective in stages. High-risk obligations apply from 2027. Always verify current guidelines and delegated acts.

We use the CrowS-Pairs methodology (Nangia et al., 2020) to measure social biases in language models.

Method Indicator Accuracy When Used
Log-Probability Gold Standard Browser inference, Ollama with logprobs support
Latency Fallback Approximation Ollama without logprobs support

Tip

For best accuracy, use Ollama v0.1.26+ with models supporting the logprobs parameter (Llama 3.2+, Mistral 7B+).

The stereotype pairs are used solely for scientific evaluation and do not reflect the opinions of the developers. Individual pairs are not displayed in the UI to avoid reinforcing harmful stereotypes – only aggregated metrics are shown.

📚 Citation
@inproceedings{nangia-etal-2020-crows,
    title = "{C}row{S}-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models",
    author = "Nangia, Nikita and Vania, Clara and Bhalerao, Rasika and Bowman, Samuel R.",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.emnlp-main.154",
    doi = "10.18653/v1/2020.emnlp-main.154",
    pages = "1953--1967"
}

🏗️ Project Structure

euconform/
├── apps/
│   ├── web/                  # Next.js 16 production app
│   └── docs/                 # Documentation site (WIP)
├── packages/
│   ├── core/                 # Risk engine, fairness metrics, types
│   ├── ui/                   # Shared UI components (shadcn-style)
│   ├── typescript-config/    # Shared TypeScript configuration
│   └── tailwind-config/      # Shared Tailwind configuration
├── .github/
│   ├── workflows/            # CI/CD pipelines
│   └── ISSUE_TEMPLATE/       # Issue templates
├── biome.json                # Biome linter config
└── turbo.json                # Turborepo pipeline config
# Run unit tests
pnpm test

# Run with coverage
pnpm test -- --coverage

# Run E2E tests (requires Playwright)
pnpm test:e2e

# Type checking
pnpm check-types

# Linting
pnpm lint
Is this tool legally binding for EU AI Act compliance?

No. This tool provides technical guidance only. Always consult qualified legal professionals for compliance decisions.

Does my data leave my browser?

Never. All processing happens locally in your browser or via your local Ollama instance. No data is sent to external servers.

Which AI models work best with bias detection?

Any model works, but models with log-probability support (Llama 3.2+, Mistral 7B+) provide more accurate results. Look for the ✅ indicator.

Can I use this for commercial purposes?

Yes. The tool is dual-licensed under MIT and EUPL-1.2 for maximum compatibility.

We welcome contributions! Please read our Contributing Guide and Code of Conduct first.

# Fork and clone
git clone https://github.com/yourusername/EuConform.git
cd EuConform

# Install and develop
pnpm install
pnpm dev

# Before submitting
pnpm lint && pnpm check-types && pnpm test

See CONTRIBUTING.md for detailed guidelines.

For security concerns, please see our Security Policy. Do not create public issues for security vulnerabilities.

Dual-licensed under:


Made with ❤️ for responsible AI in Europe

Issues · Discussions

联系我们 contact @ memedata.com