(评论)
(comments)
原始链接: https://news.ycombinator.com/item?id=39261486
这篇文章讨论了 NaturalSQL,这是一个开源文本到 SQL 深度学习模型的实验原型,由一个研究组织与大学和其他组织合作开发。 作者强调了它在使商业智能技能民主化和减少对 Tableau 和 Power BI 等昂贵工具的依赖方面的潜力。 然而,最后一部分对该模型是否有能力解决具有挑战性的 SQL 查询或在没有充分考虑业务上下文的情况下在企业级操作的能力表示怀疑。 它建议为模型开发支持结构以改善结果。 尽管如此,本文还是承认了聊天机器人技术的进步,这些技术使得创建聊天机器人能够利用自然语言技术来帮助用户通过对话系统执行与 SQL 相关的操作。 读者提出了类似的想法,他们提供数据库模式和与模型交互的结构化方法,以便将其重构为命令行界面并使其易于访问。 他们建议利用自然 SQL 构建一个开源本地工具,并邀请其他感兴趣的人合作开展该项目。 最后,读者对 GPT-4 模型许可所涉及的复杂性提出了反对意见,并暗示倾向于提供更多结构以结构化方式提出 SQL 问题的工具。
What kind of applications would this be useful for? What can you build with an AI data science intern that's right 75% of the time?
As a programmer who always has to look stuff up when I SQL, I could definitely see asking something like this for a first draft of a query but it seems like I'm slightly better off asking the bigger models in these one-off cases (and I can run a 15b easily on my 64GB m1). If I'm in a corporate setting I'm not going to leak my schema into OpenAI's training data and there are definitely times when I'd want to run queries offline. Small/local models are great when you want to do a ton of queries (save $$).
A mini data scientist that could be queried by non-technical folks would be awesome but I wonder if there's a way to determine whether the query is falling in the 25% "incorrect" case... maybe there's a RAID-like consensus algorithm where you have multiple interrogate each other's answers to get a higher overall success rate.
Mostly thinking out loud :) but maybe ya'll have more ideas. Congrats on the release, OP!
[0]: https://github.com/defog-ai/sql-eval
reply