TOON – 面向对象的标记符号表示法
TOON – Token Oriented Object Notation

原始链接: https://github.com/johannschopplich/toon

## TOON:为LLM设计的高效数据格式 TOON(Token-Oriented Object Notation,面向Token的对象表示法)是一种新的数据格式,旨在减少与大型语言模型(LLM)交互时的Token使用量,从而节省成本并实现更大的数据输入。它通过结合YAML的易读性(缩进)和CSV的表格结构来实现,并针对LLM的Token化进行了优化。 TOON在处理**统一、复杂对象**时表现出色——即具有多个字段的单个数据项,且所有数据项结构一致的数据。它通常比JSON**节省30-60%的Token**,使用最少的语法并去除冗余标点符号。它使用显式长度和字段列表来帮助LLM验证。 TOON具有适应性:对于非统一数组,它会切换到列表格式,此时JSON可能更有效。主要特性包括确定性格式、可定制的分隔符(逗号、制表符或竖线)以及长度标记选项。 基准测试表明,TOON在各种数据集(GitHub仓库、每日分析、电子商务订单)和不同的LLM上都能显著节省Token。TOON优先考虑LLM的理解能力和数据检索准确性,使其成为可读性和Token效率都至关重要的场景的理想选择。

## TOON:一种用于LLM的新数据表示法 TOON(Token Oriented Object Notation,面向Token的对象表示法)是一种新的数据序列化格式,旨在优化Token使用,并可能提高与大型语言模型(LLM)交互时的准确性。它旨在解决JSON在处理缺失或零值属性时的歧义,通过引入基于元组的表示方法——具体来说,使用`[0]`来表示空值。 核心思想是减少数据交换所需的Token数量,尤其是在诸如Agent输出(例如,文件写入命令列表)等任务中。虽然有人认为现有的YAML或优化的JSON结构可以实现类似的结果,但TOON的创建者认为其独特的结构具有优势。 早期的基准测试表明,TOON在表格数据的LLM准确性方面可以优于JSON、CSV和其他格式,但仍需要在各种模型上进行进一步测试。有人担心TOON的新颖性和缺乏训练数据可能会导致LLM理解方面的问题,以及字符串缺乏引号的问题。然而,支持者建议它可以作为中间格式使用,根据需要转换为/从JSON转换。
相关文章

原文

TOON logo with step‑by‑step guide

Token-Oriented Object Notation is a compact, human-readable format designed for passing structured data to Large Language Models with significantly reduced token usage.

TOON excels at uniform complex objects – multiple fields per row, same structure across items. It borrows YAML's indentation-based structure for nested objects and CSV's tabular format for uniform data rows, then optimizes both for token efficiency in LLM contexts.

AI is becoming cheaper and more accessible, but larger context windows allow for larger data inputs as well. LLM tokens still cost money – and standard JSON is verbose and token-expensive:

{
  "users": [
    { "id": 1, "name": "Alice", "role": "admin" },
    { "id": 2, "name": "Bob", "role": "user" }
  ]
}

TOON conveys the same information with fewer tokens:

users[2]{id,name,role}:
  1,Alice,admin
  2,Bob,user
Another reason

xkcd: Standards

Format familiarity matters as much as token count.

  • CSV: best for uniform tables.
  • JSON: best for non-uniform data.
  • TOON: best for uniform complex (but not deeply nested) objects.

TOON switches to list format for non-uniform arrays. In those cases, JSON can be cheaper at scale.

  • 💸 Token-efficient: typically 30–60% fewer tokens than JSON
  • 🤿 LLM-friendly guardrails: explicit lengths and field lists help models validate output
  • 🍱 Minimal syntax: removes redundant punctuation (braces, brackets, most quotes)
  • 📐 Indentation-based structure: replaces braces with whitespace for better readability
  • 🧺 Tabular arrays: declare keys once, then stream rows without repetition
⭐ GitHub Repositories       ██████████████░░░░░░░░░░░   8,745 tokens
                             vs JSON: 15,145  💰 42.3% saved
                             vs XML:  17,095  💰 48.8% saved

📈 Daily Analytics           ██████████░░░░░░░░░░░░░░░   4,507 tokens
                             vs JSON: 10,977  💰 58.9% saved
                             vs XML:  13,128  💰 65.7% saved

🛒 E-Commerce Order          ████████████████░░░░░░░░░     166 tokens
                             vs JSON:    257  💰 35.4% saved
                             vs XML:     271  💰 38.7% saved

─────────────────────────────────────────────────────────────────────
Total                        ████████████░░░░░░░░░░░░░  13,418 tokens
                             vs JSON: 26,379  💰 49.1% saved
                             vs XML:  30,494  💰 56.0% saved
View detailed examples

Configuration: Top 100 GitHub repositories with stars, forks, and metadata

Savings: 6,400 tokens (42.3% reduction vs JSON)

JSON (15,145 tokens):

{
  "repositories": [
    {
      "id": 28457823,
      "name": "freeCodeCamp",
      "repo": "freeCodeCamp/freeCodeCamp",
      "description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
      "createdAt": "2014-12-24T17:49:19Z",
      "updatedAt": "2025-10-27T07:40:58Z",
      "pushedAt": "2025-10-26T11:31:08Z",
      "stars": 430828,
      "watchers": 8582,
      "forks": 42136,
      "defaultBranch": "main"
    },
    {
      "id": 132750724,
      "name": "build-your-own-x",
      "repo": "codecrafters-io/build-your-own-x",
      "description": "Master programming by recreating your favorite technologies from scratch.",
      "createdAt": "2018-05-09T12:03:18Z",
      "updatedAt": "2025-10-27T07:43:25Z",
      "pushedAt": "2025-10-10T18:45:01Z",
      "stars": 430102,
      "watchers": 6322,
      "forks": 40388,
      "defaultBranch": "master"
    },
    {
      "id": 21737465,
      "name": "awesome",
      "repo": "sindresorhus/awesome",
      "description": "😎 Awesome lists about all kinds of interesting topics",
      "createdAt": "2014-07-11T13:42:37Z",
      "updatedAt": "2025-10-27T07:44:27Z",
      "pushedAt": "2025-10-23T17:26:53Z",
      "stars": 409760,
      "watchers": 8016,
      "forks": 32015,
      "defaultBranch": "main"
    }
  ]
}

TOON (8,745 tokens):

repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
  28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-27T07:40:58Z","2025-10-26T11:31:08Z",430828,8582,42136,main
  132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-27T07:43:25Z","2025-10-10T18:45:01Z",430102,6322,40388,master
  21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-27T07:44:27Z","2025-10-23T17:26:53Z",409760,8016,32015,main

Configuration: 180 days of web metrics (views, clicks, conversions, revenue)

Savings: 6,470 tokens (58.9% reduction vs JSON)

JSON (10,977 tokens):

{
  "metrics": [
    {
      "date": "2025-01-01",
      "views": 6890,
      "clicks": 401,
      "conversions": 23,
      "revenue": 6015.59,
      "bounceRate": 0.63
    },
    {
      "date": "2025-01-02",
      "views": 6940,
      "clicks": 323,
      "conversions": 37,
      "revenue": 9086.44,
      "bounceRate": 0.36
    },
    {
      "date": "2025-01-03",
      "views": 4390,
      "clicks": 346,
      "conversions": 26,
      "revenue": 6360.75,
      "bounceRate": 0.48
    },
    {
      "date": "2025-01-04",
      "views": 3429,
      "clicks": 231,
      "conversions": 13,
      "revenue": 2360.96,
      "bounceRate": 0.65
    },
    {
      "date": "2025-01-05",
      "views": 5804,
      "clicks": 186,
      "conversions": 22,
      "revenue": 2535.96,
      "bounceRate": 0.37
    }
  ]
}

TOON (4,507 tokens):

metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
  2025-01-01,6890,401,23,6015.59,0.63
  2025-01-02,6940,323,37,9086.44,0.36
  2025-01-03,4390,346,26,6360.75,0.48
  2025-01-04,3429,231,13,2360.96,0.65
  2025-01-05,5804,186,22,2535.96,0.37

Note

Measured with gpt-tokenizer using o200k_base encoding (used by GPT-5 and other modern models). Savings will vary across models and tokenizers.

Tested across 3 LLMs with data retrieval tasks:

gpt-5-nano
  toon         ████████████████████  99.4% (158/159)
  yaml         ███████████████████░  95.0% (151/159)
  csv          ██████████████████░░  92.5% (147/159)
  json         ██████████████████░░  92.5% (147/159)
  xml          ██████████████████░░  91.2% (145/159)

claude-haiku-4-5
  toon         ███████████████░░░░░  75.5% (120/159)
  xml          ███████████████░░░░░  75.5% (120/159)
  csv          ███████████████░░░░░  75.5% (120/159)
  json         ███████████████░░░░░  75.5% (120/159)
  yaml         ███████████████░░░░░  74.2% (118/159)

gemini-2.5-flash
  xml          ██████████████████░░  91.8% (146/159)
  csv          █████████████████░░░  86.2% (137/159)
  toon         █████████████████░░░  84.9% (135/159)
  json         ████████████████░░░░  81.8% (130/159)
  yaml         ████████████████░░░░  78.6% (125/159)

Advantage: TOON achieves 86.6% accuracy (vs JSON's 83.2%) while using 46.3% fewer tokens.

Performance by dataset and model
Uniform employee records (TOON optimal format)
Format Accuracy Tokens Correct/Total
toon 87.4% 2.483 152/174
csv 82.8% 2.337 144/174
yaml 83.9% 4.969 146/174
json 83.9% 6.347 146/174
xml 88.5% 7.314 154/174
E-commerce orders with nested structures
Format Accuracy Tokens Correct/Total
toon 90.9% 5.967 120/132
csv 93.9% 6.735 124/132
yaml 87.1% 7.328 115/132
json 87.9% 9.694 116/132
xml 93.2% 10.992 123/132
Time-series analytics data
Format Accuracy Tokens Correct/Total
csv 89.7% 1.393 78/87
toon 88.5% 1.515 77/87
yaml 83.9% 2.938 73/87
json 88.5% 3.665 77/87
xml 85.1% 4.376 74/87
Top 100 GitHub repositories
Format Accuracy Tokens Correct/Total
toon 76.2% 8.745 64/84
csv 69.0% 8.513 58/84
yaml 71.4% 13.129 60/84
json 69.0% 15.145 58/84
xml 71.4% 17.095 60/84
Format Accuracy Correct/Total
toon 99.4% 158/159
yaml 95.0% 151/159
csv 92.5% 147/159
json 92.5% 147/159
xml 91.2% 145/159
Format Accuracy Correct/Total
toon 75.5% 120/159
xml 75.5% 120/159
csv 75.5% 120/159
json 75.5% 120/159
yaml 74.2% 118/159
Format Accuracy Correct/Total
xml 91.8% 146/159
csv 86.2% 137/159
toon 84.9% 135/159
json 81.8% 130/159
yaml 78.6% 125/159
How the benchmark works

This benchmark tests LLM comprehension and data retrieval accuracy when data is presented in different formats. Each LLM receives formatted data and must answer questions about it (this does NOT test LLM's ability to generate TOON output).

Four datasets designed to test different structural patterns:

  1. Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
  2. Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
  3. Analytics (60 days of metrics): Time-series data with dates and numeric values.
  4. GitHub (100 repositories): Real-world data from top GitHub repos by stars.

~160 questions are generated dynamically across three categories:

  • Field retrieval (50%): Direct value lookups

    • Example: "What is Alice's salary?" → 75000
    • Example: "What is the customer name for order ORD-0042?" → John Doe
  • Aggregation (25%): Counting and summation tasks

    • Example: "How many employees work in Engineering?" → 17
    • Example: "What is the total revenue across all orders?" → 45123.50
  • Filtering (25%): Conditional queries

    • Example: "How many employees in Sales have salary > 80000?" → 5
    • Example: "How many orders have total > 400?" → 12
  1. Format conversion: Each dataset is converted to all 5 formats (TOON, JSON, YAML, CSV, XML).
  2. Query LLM: Each model receives formatted data + question in a prompt.
  3. LLM responds: Model extracts the answer from the data.
  4. Validate with LLM-as-judge: GPT-5-nano validates if the answer is semantically correct.

Answers are validated by an LLM judge (gpt-5-nano) using semantic equivalence, not exact string matching:

  • Numeric formats: 50000 = $50,000 = 50000 dollars
  • Case insensitive: Engineering = engineering = ENGINEERING
  • Minor formatting: 2025-01-01 = January 1, 2025
  • Models tested: gpt-5-nano, claude-haiku-4-5, gemini-2.5-flash
  • Token counting: Using gpt-tokenizer with o200k_base encoding (GPT-5 tokenizer)
  • Temperature: 0 (for non-reasoning models)
  • Total evaluations: 159 questions × 5 formats × 3 models = 2,385 LLM calls
# npm
npm install @byjohann/toon

# pnpm
pnpm add @byjohann/toon

# yarn
yarn add @byjohann/toon
import { encode } from '@byjohann/toon'

const data = {
  user: {
    id: 123,
    name: 'Ada',
    tags: ['reading', 'gaming'],
    active: true,
    preferences: []
  }
}

console.log(encode(data))

Output:

user:
  id: 123
  name: Ada
  tags[2]: reading,gaming
  active: true
  preferences[0]:

Canonical Formatting Rules

TOON formatting is deterministic and minimal:

  • Indentation: 2 spaces per nesting level.
  • Lines:
    • key: value for primitives (single space after colon).
    • key: for nested/empty objects (no trailing space on that line).
  • Arrays:
    • Delimiter encoding: Comma delimiters are implicit in array headers (e.g., tags[3]:, items[2]{id,name}:). Tab and pipe delimiters are explicitly shown in array headers (e.g., tags[3|]:, items[2 ]{id name}:).
    • Primitive arrays inline: key[N]: v1,v2 (comma) or key[N<delim>]: v1<delim>v2 (tab/pipe).
    • Tabular arrays: key[N]{f1,f2}: … (comma) or key[N<delim>]{f1<delim>f2}: … (tab/pipe).
    • List items: two spaces, hyphen, space (" - …").
  • Whitespace invariants:
    • No trailing spaces at end of any line.
    • No trailing newline at end of output.

Simple objects with primitive values:

encode({
  id: 123,
  name: 'Ada',
  active: true
})
id: 123
name: Ada
active: true

Nested objects:

encode({
  user: {
    id: 123,
    name: 'Ada'
  }
})

Tip

TOON includes the array length in brackets (e.g., items[3]). When using comma delimiters (default), the delimiter is implicit. When using tab or pipe delimiters, the delimiter is explicitly shown in the header (e.g., tags[2|] or [2 ]). This encoding helps LLMs identify the delimiter and track the number of elements, reducing errors when generating or validating structured output.

Primitive Arrays (Inline)

encode({
  tags: ['admin', 'ops', 'dev']
})

Arrays of Objects (Tabular)

When all objects share the same primitive fields, TOON uses an efficient tabular format:

encode({
  items: [
    { sku: 'A1', qty: 2, price: 9.99 },
    { sku: 'B2', qty: 1, price: 14.5 }
  ]
})
items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5

Tabular formatting applies recursively: nested arrays of objects (whether as object properties or inside list items) also use tabular format if they meet the same requirements.

encode({
  items: [
    {
      users: [
        { id: 1, name: 'Ada' },
        { id: 2, name: 'Bob' }
      ],
      status: 'active'
    }
  ]
})
items[1]:
  - users[2]{id,name}:
    1,Ada
    2,Bob
    status: active

Mixed and Non-Uniform Arrays

Arrays that don't meet the tabular requirements use list format:

items[3]:
  - 1
  - a: 1
  - text

When objects appear in list format, the first field is placed on the hyphen line:

items[2]:
  - id: 1
    name: First
  - id: 2
    name: Second
    extra: true

Note

Nested array indentation: When the first field of a list item is an array (primitive, tabular, or nested), its contents are indented two spaces under the header line, and subsequent fields of the same object appear at that same indentation level. This remains unambiguous because list items begin with "- ", tabular arrays declare a fixed row count in their header, and object fields contain ":".

When you have arrays containing primitive inner arrays:

encode({
  pairs: [
    [1, 2],
    [3, 4]
  ]
})
pairs[2]:
  - [2]: 1,2
  - [2]: 3,4

Empty containers have special representations:

encode({ items: [] }) // items[0]:
encode([]) // [0]:
encode({}) // (empty output)
encode({ config: {} }) // config:

TOON quotes strings only when necessary to maximize token efficiency. Inner spaces are allowed; leading or trailing spaces force quotes. Unicode and emoji are safe unquoted.

Note

When using alternative delimiters (tab or pipe), the quoting rules adapt automatically. Strings containing the active delimiter will be quoted, while other delimiters remain safe.

Keys are quoted when any of the following is true:

Condition Examples
Contains spaces, commas, colons, quotes, control chars "full name", "a,b", "order:id", "tab\there"
Contains brackets or braces "[index]", "{key}"
Leading hyphen "-lead"
Numeric-only key "123"
Empty key ""

Notes:

  • Quotes and control characters in keys are escaped (e.g., "he said \"hi\"", "line\nbreak").

String values are quoted when any of the following is true:

Condition Examples
Empty string ""
Contains active delimiter, colon, quote, backslash, or control chars "a,b" (comma), "a\tb" (tab), "a|b" (pipe), "a:b", "say \"hi\"", "C:\\Users", "line1\\nline2"
Leading or trailing spaces " padded ", " "
Looks like boolean/number/null "true", "false", "null", "42", "-3.14", "1e-6", "05"
Starts with "- " (list-like) "- item"
Looks like structural token "[5]", "{key}", "[3]: x,y"

Important

Delimiter-aware quoting: Unquoted strings never contain : or the active delimiter. This makes TOON reliably parseable with simple heuristics: split key/value on first : , and split array values on the delimiter declared in the array header. When using tab or pipe delimiters, commas don't need quoting – only the active delimiter triggers quoting for both array values and object values.

note: "hello, world"
items[3]: foo,"true","- item"
hello 👋 world         // unquoted
" padded "             // quoted
value: null            // null value
name: ""               // empty string (quoted)
text: "line1\nline2"   // multi-line string (escaped)

Tabular Format Requirements

For arrays of objects to use the efficient tabular format, all of the following must be true:

Requirement Detail
All elements are objects No primitives in the array
Identical key sets No missing or extra keys across rows
Primitive values only No nested arrays or objects
Header delimiter Comma is implicit in headers ([N]{f1,f2}); tab and pipe are explicit ([N ]{f1 f2}, `[N
Header key order Taken from the first object
Header key quoting Same rules as object keys; keys containing the active delimiter must be quoted
Row value quoting Same rules as string values; values containing the active delimiter must be quoted

If any condition fails, TOON falls back to list format.

Some non-JSON types are automatically normalized for LLM-safe output:

Input Output
Number (finite) Decimal form, no scientific notation; -00
Number (NaN, ±Infinity) null
BigInt Decimal digits (no quotes)
Date ISO string in quotes (e.g., "2025-01-01T00:00:00.000Z")
undefined null
function null
symbol null

Number normalization examples:

-0    → 0
1e6   → 1000000
1e-6  → 0.000001

encode(value: unknown, options?: EncodeOptions): string

Converts any JSON-serializable value to TOON format.

Parameters:

  • value – Any JSON-serializable value (object, array, primitive, or nested structure). Non-JSON-serializable values (functions, symbols, undefined, non-finite numbers) are converted to null. Dates are converted to ISO strings, and BigInts are emitted as decimal integers (no quotes).
  • options – Optional encoding options:
    • indent?: number – Number of spaces per indentation level (default: 2)
    • delimiter?: ',' | '\t' | '|' – Delimiter for array values and tabular rows (default: ',')
    • lengthMarker?: '#' | false – Optional marker to prefix array lengths (default: false)

Returns:

A TOON-formatted string with no trailing newline or spaces.

Example:

import { encode } from '@byjohann/toon'

const items = [
  { sku: 'A1', qty: 2, price: 9.99 },
  { sku: 'B2', qty: 1, price: 14.5 }
]

console.log(encode({ items }))

Output:

items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5

The delimiter option allows you to choose between comma (default), tab, or pipe delimiters for array values and tabular rows. Alternative delimiters can provide additional token savings in specific contexts.

Using tab delimiters instead of commas can reduce token count further, especially for tabular data:

import { encode } from '@byjohann/toon'

const data = {
  items: [
    { sku: 'A1', name: 'Widget', qty: 2, price: 9.99 },
    { sku: 'B2', name: 'Gadget', qty: 1, price: 14.5 }
  ]
}

console.log(encode(data, { delimiter: '\t' }))

Output:

items[2	]{sku	name	qty	price}:
  A1	Widget	2	9.99
  B2	Gadget	1	14.5

Benefits:

  • Tabs are single characters and often tokenize more efficiently than commas.
  • Tabs rarely appear in natural text, reducing the need for quote-escaping.
  • The delimiter is explicitly encoded in the array header, making it self-descriptive.

Considerations:

  • Some terminals and editors may collapse or expand tabs visually.
  • String values containing tabs will still require quoting.

Pipe delimiters offer a middle ground between commas and tabs:

console.log(encode(data, { delimiter: '|' }))

Output:

items[2|]{sku|name|qty|price}:
  A1|Widget|2|9.99
  B2|Gadget|1|14.5

The lengthMarker option adds an optional hash (#) prefix to array lengths to emphasize that the bracketed value represents a count, not an index:

import { encode } from '@byjohann/toon'

const data = {
  tags: ['reading', 'gaming', 'coding'],
  items: [
    { sku: 'A1', qty: 2, price: 9.99 },
    { sku: 'B2', qty: 1, price: 14.5 },
  ],
}

console.log(encode(data, { lengthMarker: '#' }))
// tags[#3]: reading,gaming,coding
// items[#2]{sku,qty,price}:
//   A1,2,9.99
//   B2,1,14.5

// Works with custom delimiters
console.log(encode(data, { lengthMarker: '#', delimiter: '|' }))
// tags[#3|]: reading|gaming|coding
// items[#2|]{sku|qty|price}:
//   A1|2|9.99
//   B2|1|14.5

Using TOON in LLM Prompts

TOON works best when you show the format instead of describing it. The structure is self-documenting – models parse it naturally once they see the pattern.

Sending TOON to LLMs (Input)

Wrap your encoded data in a fenced code block (label it ```toon for clarity). The indentation and headers are usually enough – models treat it like familiar YAML or CSV. The explicit length markers ([N]) and field headers ({field1,field2}) help the model track structure, especially for large tables.

Generating TOON from LLMs (Output)

For output, be more explicit. When you want the model to generate TOON:

  • Show the expected header (users[N]{id,name,role}:). The model fills rows instead of repeating keys, reducing generation errors.
  • State the rules: 2-space indent, no trailing spaces, [N] matches row count.

Here's a prompt that works for both reading and generating:

Data is in TOON format (2-space indent, arrays show length and fields).

\`\`\`toon
users[3]{id,name,role,lastLogin}:
  1,Alice,admin,2025-01-15T10:30:00Z
  2,Bob,user,2025-01-14T15:22:00Z
  3,Charlie,user,2025-01-13T09:45:00Z
\`\`\`

Task: Return only users with role "user" as TOON. Use the same header. Set [N] to match the row count. Output only the code block.

Tip

For large uniform tables, use encode(data, { delimiter: '\t' }) and tell the model "fields are tab-separated." Tabs often tokenize better than commas and reduce the need for quote-escaping.

  • Token counts vary by tokenizer and model. Benchmarks use a GPT-style tokenizer (cl100k/o200k); actual savings will differ with other models (e.g., SentencePiece).
  • TOON is designed for LLM contexts where human readability and token efficiency matter. It's not a drop-in replacement for JSON in APIs or storage.
  • Tabular arrays require all objects to have exactly the same keys with primitive values only. Arrays with mixed types (primitives + objects/arrays), non-uniform objects, or nested structures will use a more verbose list format.
  • Object key order is preserved from the input. In tabular arrays, header order follows the first object's keys.
  • Arrays mixing primitives and objects/arrays always use list form:
    items[2]:
      - a: 1
      - [2]: 1,2
    
  • Deterministic formatting: 2-space indentation, stable key order, no trailing spaces/newline.
// Object
{ id: 1, name: 'Ada' }          → id: 1
                                  name: Ada

// Nested object
{ user: { id: 1 } }             → user:
                                    id: 1

// Primitive array (inline)
{ tags: ['foo', 'bar'] }        → tags[2]: foo,bar

// Tabular array (uniform objects)
{ items: [                      → items[2]{id,qty}:
  { id: 1, qty: 5 },                1,5
  { id: 2, qty: 3 }                 2,3
]}

// Mixed / non-uniform (list)
{ items: [1, { a: 1 }, 'x'] }   → items[3]:
                                    - 1
                                    - a: 1
                                    - x

// Array of arrays
{ pairs: [[1, 2], [3, 4]] }     → pairs[2]:
                                    - [2]: 1,2
                                    - [2]: 3,4

// Root array
['x', 'y']                      → [2]: x,y

// Empty containers
{}                              → (empty output)
{ items: [] }                   → items[0]:

// Special quoting
{ note: 'hello, world' }        → note: "hello, world"
{ items: ['true', true] }       → items[2]: "true",true

MIT License © 2025-PRESENT Johann Schopplich

联系我们 contact @ memedata.com