AlphaGeometry:奥林匹克级几何人工智能系统
AlphaGeometry: An Olympiad-level AI system for geometry

原始链接: https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry/

随着时间的推移,谷歌在数学推理方面的研究取得了各种突破。 首先,他们对纯数学之美的探索涉及学习如何通过使用借用图像识别的技术来识别以前未知的数学概念。 其次,他们引入“进一步”的目的是通过使全球独立工作的学者能够通过在线讨论分享他们的想法来无缝协作,从而改变数学研究的进行方式。 第三,Google DeepMind 和 Google Research 开发了 FunSearch 方法,使他们能够利用大型语言模型在数学科学领域取得新发现。 就具体成果而言,基于这些进步构建的AlphaGeometry系统取得了以下成果: - 引入了由神经语言模型和符号推演引擎组成的神经符号方法,可以更快、更可靠地识别潜在有用的结构,然后对决策进行更严格的合理化。 - 生成了 1 亿个合成数据示例,随后用于从头开始训练 AlphaGeometry,无需任何人类演示。 - 开发了一种称为“符号演绎和回溯”的方法,该方法有助于模拟人类构建几何基础知识的学习过程,特别是空间性、距离、形状和相对位置。 - 使用 Google Cloud Platform、TensorFlow 和 Colaboratory 创建大型语言模型,所有这些均由 Google 提供; 该算法的代码和模型已开源。 由此,AlphaGeometry 成为第一个能够在 2000 年和 2015 年两次通过国际数学奥林匹克铜牌门槛的人工智能模型。

在这种情况下,“我们的”是指负责创建产生给定结果的人工智能系统的团队或团体。 这里,“我们的”特指谷歌的人工智能团队或合作开发论文中提出的算法的人。
相关文章

原文

Research

Published
Authors

Trieu Trinh and Thang Luong

Abstract neon geometric shapes and figures against a blue, space-like background.

Our AI system surpasses the state-of-the-art approach for geometry problems, advancing AI reasoning in mathematics


Reflecting the Olympic spirit of ancient Greece, the International Mathematical Olympiad is a modern-day arena for the world's brightest high-school mathematicians. The competition not only showcases young talent, but has emerged as a testing ground for advanced AI systems in math and reasoning.

In a paper published today in Nature, we introduce AlphaGeometry, an AI system that solves complex geometry problems at a level approaching a human Olympiad gold-medalist - a breakthrough in AI performance. In a benchmarking test of 30 Olympiad geometry problems, AlphaGeometry solved 25 within the standard Olympiad time limit. For comparison, the previous state-of-the-art system solved 10 of these geometry problems, and the average human gold medalist solved 25.9 problems.

In our benchmarking set of 30 Olympiad geometry problems (IMO-AG-30), compiled from the Olympiads from 2000 to 2022, AlphaGeometry solved 25 problems under competition time limits. This is approaching the average score of human gold medalists on these same problems. The previous state-of-the-art approach, known as “Wu’s method”, solved 10.

AI systems often struggle with complex problems in geometry and mathematics due to a lack of reasoning skills and training data. AlphaGeometry’s system combines the predictive power of a neural language model with a rule-bound deduction engine, which work in tandem to find solutions. And by developing a method to generate a vast pool of synthetic training data - 100 million unique examples - we can train AlphaGeometry without any human demonstrations, sidestepping the data bottleneck.

With AlphaGeometry, we demonstrate AI’s growing ability to reason logically, and to discover and verify new knowledge. Solving Olympiad-level geometry problems is an important milestone in developing deep mathematical reasoning on the path towards more advanced and general AI systems. We are open-sourcing the AlphaGeometry code and model, and hope that together with other tools and approaches in synthetic data generation and training, it helps open up new possibilities across mathematics, science, and AI.

It makes perfect sense to me now that researchers in AI are trying their hands on the IMO geometry problems first because finding solutions for them works a little bit like chess in the sense that we have a rather small number of sensible moves at every step. But I still find it stunning that they could make it work. It's an impressive achievement.

Ngô Bảo Châu, Fields Medalist and IMO gold medalist

AlphaGeometry adopts a neuro-symbolic approach

AlphaGeometry is a neuro-symbolic system made up of a neural language model and a symbolic deduction engine, which work together to find proofs for complex geometry theorems. Akin to the idea of “thinking, fast and slow”, one system provides fast, “intuitive” ideas, and the other, more deliberate, rational decision-making.

Because language models excel at identifying general patterns and relationships in data, they can quickly predict potentially useful constructs, but often lack the ability to reason rigorously or explain their decisions. Symbolic deduction engines, on the other hand, are based on formal logic and use clear rules to arrive at conclusions. They are rational and explainable, but they can be “slow” and inflexible - especially when dealing with large, complex problems on their own.

AlphaGeometry’s language model guides its symbolic deduction engine towards likely solutions to geometry problems. Olympiad geometry problems are based on diagrams that need new geometric constructs to be added before they can be solved, such as points, lines or circles. AlphaGeometry’s language model predicts which new constructs would be most useful to add, from an infinite number of possibilities. These clues help fill in the gaps and allow the symbolic engine to make further deductions about the diagram and close in on the solution.

AlphaGeometry solving a simple problem: Given the problem diagram and its theorem premises (left), AlphaGeometry (middle) first uses its symbolic engine to deduce new statements about the diagram until the solution is found or new statements are exhausted. If no solution is found, AlphaGeometry’s language model adds one potentially useful construct (blue), opening new paths of deduction for the symbolic engine. This loop continues until a solution is found (right). In this example, just one construct is required.

AlphaGeometry solving an Olympiad problem: Problem 3 of the 2015 International Mathematics Olympiad (left) and a condensed version of AlphaGeometry’s solution (right). The blue elements are added constructs. AlphaGeometry’s solution has 109 logical steps.

Generating 100 million synthetic data examples

Geometry relies on understanding of space, distance, shape, and relative positions, and is fundamental to art, architecture, engineering and many other fields. Humans can learn geometry using a pen and paper, examining diagrams and using existing knowledge to uncover new, more sophisticated geometric properties and relationships. Our synthetic data generation approach emulates this knowledge-building process at scale, allowing us to train AlphaGeometry from scratch, without any human demonstrations.

Using highly parallelized computing, the system started by generating one billion random diagrams of geometric objects and exhaustively derived all the relationships between the points and lines in each diagram. AlphaGeometry found all the proofs contained in each diagram, then worked backwards to find out what additional constructs, if any, were needed to arrive at those proofs. We call this process “symbolic deduction and traceback”.

Visual representations of the synthetic data generated by AlphaGeometry

That huge data pool was filtered to exclude similar examples, resulting in a final training dataset of 100 million unique examples of varying difficulty, of which nine million featured added constructs. With so many examples of how these constructs led to proofs, AlphaGeometry’s language model is able to make good suggestions for new constructs when presented with Olympiad geometry problems.

Pioneering mathematical reasoning with AI


The solution to every Olympiad problem provided by AlphaGeometry was checked and verified by computer. We also compared its results with previous AI methods, and with human performance at the Olympiad. In addition, Evan Chen, a math coach and former Olympiad gold-medalist, evaluated a selection of AlphaGeometry’s solutions for us.
Chen said: “AlphaGeometry's output is impressive because it's both verifiable and clean. Past AI solutions to proof-based competition problems have sometimes been hit-or-miss (outputs are only correct sometimes and need human checks). AlphaGeometry doesn't have this weakness: its solutions have machine-verifiable structure. Yet despite this, its output is still human-readable. One could have imagined a computer program that solved geometry problems by brute-force coordinate systems: think pages and pages of tedious algebra calculation. AlphaGeometry is not that. It uses classical geometry rules with angles and similar triangles just as students do.”

AlphaGeometry's output is impressive because it's both verifiable and clean…It uses classical geometry rules with angles and similar triangles just as students do.

Evan Chen, math coach and Olympiad gold medalist

As each Olympiad features six problems, only two of which are typically focused on geometry, AlphaGeometry can only be applied to one-third of the problems at a given Olympiad. Nevertheless, its geometry capability alone makes it the first AI model in the world capable of passing the bronze medal threshold of the IMO in 2000 and 2015.

In geometry, our system approaches the standard of an IMO gold-medalist, but we have our eye on an even bigger prize: advancing reasoning for next-generation AI systems. Given the wider potential of training AI systems from scratch with large-scale synthetic data, this approach could shape how the AI systems of the future discover new knowledge, in math and beyond.

AlphaGeometry builds on Google DeepMind and Google Research’s work to pioneer mathematical reasoning with AI – from exploring the beauty of pure mathematics to solving mathematical and scientific problems with language models. And most recently, we introduced FunSearch, which made the first discoveries in open problems in mathematical sciences using Large Language Models.

Our long-term goal remains to build AI systems that can generalize across mathematical fields, developing the sophisticated problem-solving and reasoning that general AI systems will depend on, all the while extending the frontiers of human knowledge.

联系我们 contact @ memedata.com