Firebase for AI Agents — Persistent state management for AI applications
AgentState provides a simple, scalable way to store and manage AI agent state with real-time updates, rich querying, and built-in persistence. Think Firebase for your AI agents.
🚀 Key Features:
- Zero-config setup — Docker one-liner gets you started
- Language agnostic — HTTP/gRPC APIs + Python/Node.js SDKs
- High performance — 1,400+ ops/sec with crash-safe persistence
- Real-time queries — Find agents by tags, get live updates
- Production ready — Load tested, monitored, Kubernetes friendly
- 🔄 Real-time state updates - Subscribe to agent state changes
- 🏷️ Rich querying - Query agents by tags and attributes
- 💾 Persistent storage - Crash-safe WAL + snapshots
- ⚡ High performance - 1,400+ ops/sec, ~15ms latency
- 🐳 Production ready - Docker, Kubernetes, monitoring
- 🔌 Simple API - HTTP REST + gRPC, language agnostic
Option A: Using Docker (Recommended)
# Quick start - no auth required
docker run -p 8080:8080 ayushmi/agentstate:latest
# With persistent storage
docker run -p 8080:8080 -p 9090:9090 \
-e DATA_DIR=/data \
-v agentstate-data:/data \
ayushmi/agentstate:latest
# Test it works
curl http://localhost:8080/health
Option B: Using Docker Compose (Full Setup)
git clone https://github.com/ayushmi/agentstate.git
cd agentstate
docker-compose up -d
# Generate auth token for testing (optional)
export AGENTSTATE_API_KEY=$(python scripts/generate_cap_token.py \
--kid active --secret dev-secret \
--ns my-app --verb put --verb get --verb delete --verb query --verb lease)
Python SDK:
from agentstate import AgentStateClient
client = AgentStateClient(base_url='http://localhost:8080', namespace='my-app')
# Create agent
agent = client.create_agent(
agent_type='chatbot',
body={'name': 'CustomerBot', 'status': 'active'},
tags={'team': 'customer-success'}
)
print(f"Created agent: {agent['id']}")
# Query agents
agents = client.query_agents(tags={'team': 'customer-success'})
print(f"Found {len(agents)} customer success agents")
# Get specific agent
agent = client.get_agent(agent_id)
print(f"Agent status: {agent['body']['status']}")
Node.js SDK:
import { AgentStateClient } from 'agentstate';
const client = new AgentStateClient({
baseUrl: 'http://localhost:8080',
namespace: 'my-app'
});
// Create agent
const agent = await client.createAgent({
type: 'workflow',
body: {name: 'DataProcessor', status: 'idle'},
tags: {capability: 'data-processing'}
});
// Update agent state
const updatedAgent = await client.updateAgent(agent.id, {
body: {name: 'DataProcessor', status: 'processing', currentJob: 'analytics'}
});
console.log(`Agent ${agent.id} status: ${updatedAgent.body.status}`);
Raw HTTP API:
# Create agent
curl -X POST http://localhost:8080/v1/my-app/objects \
-H "Content-Type: application/json" \
-d '{"type": "chatbot", "body": {"name": "Bot1"}, "tags": {"env": "prod"}}'
# Query agents
curl -X POST http://localhost:8080/v1/my-app/query \
-H "Content-Type: application/json" \
-d '{"tags": {"env": "prod"}}'
AgentState integrates seamlessly with popular AI frameworks:
LangChain Integration:
from agentstate import AgentStateClient
from langchain.memory import BaseChatMessageHistory
from langchain.agents import AgentExecutor
# Use AgentState as LangChain memory backend
class AgentStateMemory(BaseChatMessageHistory):
def __init__(self, agent_id: str, client: AgentStateClient):
self.agent_id = agent_id
self.client = client
# Full LangChain + AgentState demo available in examples/
CrewAI Integration:
from agentstate import AgentStateClient
import crewai
client = AgentStateClient(base_url='http://localhost:8080', namespace='crew')
# Store crew member states, task progress, and coordination
agent = client.create_agent(
agent_type='crew_member',
body={'role': 'researcher', 'current_task': 'market_analysis'},
tags={'crew_id': 'marketing_team', 'status': 'active'}
)
Custom Agent Frameworks:
# AgentState works with any agent framework
class MyAgent:
def __init__(self, agent_id):
self.state = AgentStateClient(namespace='my_agents')
self.id = agent_id
def save_state(self, data):
return self.state.create_agent(
agent_type='custom',
body=data,
agent_id=self.id
)
def load_state(self):
return self.state.get_agent(self.id)
Real-world benchmarks from our test suite:
- 🚀 Write throughput: 1,400+ ops/sec
- 🔍 Read throughput: 170+ queries/sec
- ⚡ Average latency: ~15ms
- 📈 P95 latency: ~30ms
- ✅ Reliability: 0% error rate under load
Each agent is stored with:
id
: Unique identifier (ULID)type
: Agent category ("chatbot", "workflow", etc.)body
: Your agent's state (any JSON)tags
: Key-value pairs for queryingcommit_ts
: Last update timestamp
Organize agents by environment/team:
/v1/production/objects
- Production agents/v1/staging/objects
- Staging environment/v1/team-alpha/objects
- Team-specific
# Find all active chatbots
response = requests.post("http://localhost:8080/v1/production/query", json={
"tags": {"type": "chatbot", "status": "active"}
})
# Monitor agents by team
team_agents = requests.post("http://localhost:8080/v1/production/query", json={
"tags": {"team": "ml-platform"}
}).json()
Method | Endpoint | Description |
---|---|---|
POST |
/v1/{ns}/objects |
Create/update agent |
GET |
/v1/{ns}/objects/{id} |
Get agent by ID |
POST |
/v1/{ns}/query |
Query agents by tags |
DELETE |
/v1/{ns}/objects/{id} |
Delete agent |
GET |
/health |
Health check |
GET |
/metrics |
Prometheus metrics |
docker run -d --name agentstate \
-p 8080:8080 \
-p 9090:9090 \
ayushmi/agentstate:latest
docker run -d --name agentstate \
-p 8080:8080 \
-p 9090:9090 \
-e DATA_DIR=/data \
-v agentstate-data:/data \
--restart unless-stopped \
ayushmi/agentstate:latest
version: '3.8'
services:
agentstate:
image: ayushmi/agentstate:latest
ports:
- "8080:8080"
- "9090:9090"
environment:
- DATA_DIR=/data
volumes:
- agentstate-data:/data
restart: unless-stopped
volumes:
agentstate-data:
apiVersion: apps/v1
kind: Deployment
metadata:
name: agentstate
spec:
replicas: 3
selector:
matchLabels:
app: agentstate
template:
metadata:
labels:
app: agentstate
spec:
containers:
- name: agentstate
image: ayushmi/agentstate:latest
ports:
- containerPort: 8080
- containerPort: 9090
env:
- name: DATA_DIR
value: /data
volumeMounts:
- name: data
mountPath: /data
volumes:
- name: data
persistentVolumeClaim:
claimName: agentstate-data
---
apiVersion: v1
kind: Service
metadata:
name: agentstate
spec:
selector:
app: agentstate
ports:
- name: http
port: 8080
targetPort: 8080
- name: grpc
port: 9090
targetPort: 9090
- Rust 1.81+
- Protocol Buffers compiler
# Clone repository
git clone https://github.com/ayushmi/agentstate.git
cd agentstate
# Build server
cargo build --release -p agentstate-server
# Run server
./target/release/agentstate-server
# Or build Docker image
docker build -f docker/Dockerfile -t ayushmi/agentstate:latest .
Run the comprehensive test suite:
# Integration tests
python integration_tests.py
# Load testing
python load_test.py
# SDK examples
python examples/quickstart/python_example.py
node examples/quickstart/nodejs_example.js
# Basic test suite
bash test_suite.sh
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
Multi-Agent AI Systems:
# Coordinate multiple specialized agents
marketing_agent = client.create_agent('marketing_specialist', {...})
research_agent = client.create_agent('research_specialist', {...})
writer_agent = client.create_agent('content_writer', {...})
# Query agents by capability when needed
available_agents = client.query_agents(tags={'status': 'idle', 'capability': 'research'})
Workflow Orchestration:
# Track workflow steps and state
workflow = client.create_agent(
agent_type='workflow',
body={
'current_step': 'data_collection',
'completed_steps': ['initialization'],
'next_steps': ['analysis', 'reporting']
},
tags={'workflow_id': 'user_onboarding', 'priority': 'high'}
)
Agent Monitoring & Analytics:
# Real-time agent health monitoring
active_agents = client.query_agents(tags={'status': 'active'})
failed_agents = client.query_agents(tags={'status': 'error'})
# Build dashboards with live agent metrics
for agent in active_agents:
print(f"Agent {agent['id']}: {agent['body']['current_task']}")
Traditional approaches to AI agent state management involve:
- Complex Redis/Postgres setups
- Custom queuing systems
- Manual state synchronization
- No built-in querying capabilities
AgentState provides:
- ✅ Simple API - Just HTTP requests, no complex SDKs
- ✅ Built-in persistence - Automatic WAL + snapshots
- ✅ Rich querying - Find agents by any tag combination
- ✅ Real-time updates - Subscribe to state changes
- ✅ Production ready - Monitoring, clustering, reliability
- ✅ Language agnostic - Works with any HTTP client
Perfect for:
- Multi-agent AI systems
- Agent monitoring dashboards
- Workflow orchestration
- Real-time agent coordination
- Production AI deployments
Ready to power your AI agents with persistent, queryable state! 🚀
1-Minute Setup:
# Start server
docker run -p 8080:8080 ayushmi/agentstate:latest
# Install SDK (Python or Node.js)
pip install agentstate
# npm install agentstate
# Create your first agent
python -c "
from agentstate import AgentStateClient
client = AgentStateClient(base_url='http://localhost:8080', namespace='demo')
agent = client.create_agent('chatbot', {'name': 'MyBot', 'status': 'active'})
print(f'Created agent: {agent[\"id\"]}')
"
Explore Examples:
Server Not Starting
# Check if port is already in use
lsof -i :8080
# Use different port if needed
docker run -p 8081:8080 ayushmi/agentstate:latest
Connection Refused
# Verify server is running
curl http://localhost:8080/health
# Should return: ok
SDK Installation Issues
# Python: Upgrade pip and reinstall
pip install --upgrade pip
pip install --upgrade agentstate
# Node.js: Clear cache and reinstall
npm cache clean --force
npm install agentstate
Performance Issues
- Default setup handles 1,400+ ops/sec
- For higher throughput, see Performance Guide
- Monitor with
/metrics
endpoint on port 9090
Docker Image Issues
# Pull latest image
docker pull ayushmi/agentstate:latest
# Check if image is running
docker ps
# View container logs
docker logs <container-id>
For questions and support, see our Issues page.