Evidence of a 12,800-year-old shallow airburst depression in Louisiana

原始链接: https://www.scienceopen.com/hosted-document?doi=10.14293/ACI.2025.0004

Research from diverse fields including geology, archaeology, and planetary science increasingly suggests the importance of airburst events in shaping Earth's surface and influencing past civilizations. Studies of the 1908 Tunguska event provide crucial data, and recent work analyzes shock-metamorphic effects like planar deformation features in quartz, meltglass, and microspherules to identify potential airburst sites. Modeling efforts explore the dynamics of airbursts from comets, asteroids, and even nuclear detonations. Evidence supports the hypothesis that a Tunguska-sized airburst destroyed the Middle Bronze Age city of Tall el-Hammam. Other research focuses on the Younger Dryas boundary (~12.8 ka), linking platinum anomalies, shocked quartz, and meltglass to possible cosmic impacts or airbursts, and investigating specific sites like Abu Hureyra, Syria and possible impact sites in Germany. Advanced techniques, including SEM-CL imaging and Bayesian chronological analyses, are used to differentiate impact-related features from terrestrial processes and refine dating. The Chelyabinsk event serves as a modern analog for understanding airburst dynamics and associated hazards.

A Hacker News thread discusses a new paper suggesting evidence of a 12,800-year-old airburst depression in Louisiana, potentially linked to the Younger Dryas impact hypothesis. This hypothesis, which posits that an extraterrestrial impact caused a sudden climate shift and potentially reset civilization, is controversial. Commenters debate the validity of the evidence, the influence of creationist viewpoints on the hypothesis, and alternative explanations for the Younger Dryas, such as freshwater influx from melting glaciers. Some point to multiple potential impact sites and question the widely accepted explanation, while others express skepticism due to the hypothesis's contentious nature and potential links to religious fundamentalism. A few debate the nature of "events" and "periods" of geologic time, and the precise dating methods used. A few users also speculated about potential issues with the current evidence and data.
相关文章

原文
  • Kletetschka G, Takac M, Smrcinova L, Kavkova R, Abbott D, LeCompte MA, Moore CR, Kennett JP, Adedeji V, Witwer T, et al.. New Evidence of High-Temperature, High-Pressure Processes at the Site of the 1908 Tunguska Event: Implications for Impact and Airburst Phenomena. Airburs. Crater. Imp. 2025. Vol. 3:20250001

  • West A, Young MD, Costa L, Kennett JP, Moore CR, LeCompte MA, Kletetschka G, Hermes RE. Modeling Airbursts by Comets, Asteroids, and Nuclear Detonations: Shock Metamorphism, Meltglass, and Microspherules. Airburs. Crater. Imp. 2024. Vol. 2:1–30

  • Boslough M, Crawford DA. Low-altitude Airbursts and the Impact Threat. Int. J. Impact. Eng. 2008. Vol. 35:1441–1448

  • Boslough MB, Crawford DA. Low-Altitude Airbursts and the Impact Threat-Final LDRD Report. Sandia National Lab. (SNL-NM). Albuquerque, NM, USA: 2007. [Cross Ref]

  • Fitzenreiter R, et al.. SUPPORTING INFORMATION: Evidence of a 12,800-year-old Shallow Airburst Depression in Louisiana with Large Deposits of Shocked Quartz and Melted Materials in Zenodo.org . 2025.

  • Hamers MF, Drury MR. Scanning Electron Microscope-Cathodoluminescence (SEM-CL) Imaging of Planar Deformation Features and Tectonic Deformation Lamellae in Quartz. Meteorit. Planet. Sci. 2011. Vol. 46:1814–1831. [Cross Ref]

  • Hamers MF, Pennock GM, Drury MR. Scanning Electron Microscope Cathodoluminescence Imaging of Subgrain Boundaries, Twins and Planar Deformation Features in Quartz. Phys. Chem. Minerals. 2017. Vol. 44:263–275. [Cross Ref]

  • Hamers MF, Pennock GM, Herwegh M, Drury MR. Distinction Between Amorphous and Healed Planar Deformation Features in Shocked Quartz Using Composite Color Scanning Electron Microscope Cathodoluminescence (SEM-CL) Imaging. Meteorit. Planet. Sci. 2016. Vol. 51:1914–1931. [Cross Ref]

  • French BM. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar and Planetary Institute. 1998. p. 120

  • Silvia PJ, Collins S, LeCompte MA, Costa L, Howard GA, Kennett JP, Moore CR, Kletetschka G, Victor Adedeji A, Hermes RE, et al.. Modeling How a Powerful Airburst Destroyed Tall el-Hammam, a Middle Bronze Age City Near the Dead Sea. Airburs. Crater. Imp. 2024. Vol. 2:1–52. [Cross Ref]

  • Bunch TE, LeCompte MA, Victor Adedeji A, Wittke JH, David Burleigh T, Hermes RE, Mooney C, Batchelor D, Wolbach WS, Kathan J, et al.. A Tunguska Sized Airburst Destroyed Tall el-Hammam a Middle Bronze Age City in the Jordan Valley Near the Dead Sea. Sci. Rep. 2021. Vol. 11:18632[Cross Ref]

  • Moore CR, LeCompte MA, Kennett JP, Brooks MJ, Firestone RB, Ivester AH, Ferguson TA, Lane CS, Duernberger KA, Feathers JK, et al.. Platinum, Shock-Fractured Quartz, Microspherules, and Meltglass Widely Distributed in Eastern USA at the Younger Dryas Onset (12.8 ka). Airburs. Crater. Imp. 2024. Vol. 2:1–31

  • Fenneman NM. Oil Fields of the Texas-Louisiana Gulf Coastal Plain. US Government Printing Office. 1906. p. 146

  • OxCal 4.4.4. University of Cambridge. 2021. http://c14.arch.ox.ac.uk/oxcal

  • Kennett JP, Kennett DJ, Culleton BJ, Aura Tortosa JE, Bischoff JL, Bunch TE, Daniel IR, Erlandson JM, Ferraro D, Firestone RB, et al.. Bayesian Chronological Analyses Consistent with Synchronous Age of 12,835-12,735 Cal B.P. for Younger Dryas Boundary on Four Continents. Proc. Natl. Acad. Sci. U. S. A. 2015. Vol. 112:E4344–4353. [Cross Ref]

  • Perttula TK. Paleoindian to middle archaic projectile points from east texasIndex of Texas Archaeology: Open Access Gray Literature from the Lone Star State. 2013. Vol. Volume 2013:pp. 27[Cross Ref]

  • White AA. Functional and Stylistic Variability in Paleoindian and Early Archaic Projectile Points from Midcontinental North America. N. Am. Archaeol. 2013. Vol. 34:71–108. [Cross Ref]

  • Yakubik J-K, Wilkie LA, Weinstein R, Schilling T, Saunders J. Archaeology of Louisiana. Louisiana State University Press. 2010

  • Bronk Ramsey C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon. 2009. Vol. 51:337–360

  • Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Ramsey CB, Butzin M, Cheng H, Edwards RL, Friedrich M, et al.. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. 2020. Vol. 62:725–757. [Cross Ref]

  • Sweatman M, Powell J, West A, Young M. Rebuttal of Holliday et al.’s Comprehensive Gish Gallop of the Younger Dryas Impact Hypothesis. Airburs. Crater. Imp. 2024. Vol. 2:[Cross Ref]

  • Sweatman MB. The Younger Dryas Impact Hypothesis: Review of the Impact Evidence. Earth Sci. Revi. 2021. Vol. 218:103677

  • Kennett DJ, West JP, Erlandson GJ, Johnson JM, Hendy JR, West IL, Culleton A, Jones BJ, Stafford TL, Thomas W. Wildfire and Abrupt Ecosystem Disruption on California’s Northern Channel Islands at the Ållerød-Younger Dryas Boundary (13.0-12.9 ka). Quat. Sci. Rev. 2008. Vol. 27:2530–2545

  • Lowe DR, Byerly GR. The Terrestrial Record of Late Heavy Bombardment. New Astron. Rev. 2018. Vol. 81:39–61

  • Chadwick B, Claeys P, Simonson B. New Evidence for a Large Palaeoproterozoic Impact: Spherules in a Dolomite Layer in the Ketilidian Orogen, South Greenland. J. Geol. Soc. 2001. Vol. 158:331–340

  • Moore AMT, Kennett JP, Napier WM, Bunch TE, Weaver JC, LeCompte M, Victor Adedeji A, Hackley P, Kletetschka G, Hermes RE, et al.. Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature Melting at >2200°C. Sci. Rep. 2020. Vol. 10:4185[Cross Ref]

  • Tselmovich V, Kurazhkovskii AYu, Kazansky AYu, Shchetnikov AA, Blyakharchuk TA. Catastrophic events in the holocene and their registration in peat depositsProceedings of the 11th Intl School and Conference “Problems of Geocosmos”; 3–7 October 2016; St. Petersburg, Russia. 2016. p. 91–98

  • Tselmovich VA, Kurazhkovskii AY, Kazansky AY, Shchetnikov AA, Blyakharchuk TA, Philippov DA. Studying the Dynamics of Cosmic Dust Flux on the Earth’s Surface from Peat Deposits. Izvestiya, Physics of the Solid Earth. 2019. Vol. 55:517–527. [Cross Ref]

  • Tselmovich VA. Composition and microscopic features of background cosmic dust from peatMinerals: Structure, Properties, Methods of Investigation: 9th Geoscience Conference for Young Scientists, Ekaterinburg, Russia, February 5–8; 2020. Vol. 2018. p. 253–259

  • Sungatullin RH, Bahtin AI, Vorobev VV, Osin JN, Guzel S, Vladimir AT. Composition and Morphology of Metal Microparticles in Paleozoic Sediments of Caspian Depression. Int. J. Appl. Eng. Res. 2015. Vol. 10:45372–45382

  • Sungatullin RK, Sungatullina GM, Zakirov MI, Tsel’movich VA, Glukhov MS, Bakhtin AI, Osin YN, Vorob’ev VV. Cosmic Microspheres in the Carboniferous Deposits of the Usolka Section (Urals foredeep). Russ. Geol. Geophys. 2017. Vol. 58:59–69. [Cross Ref]

  • Pechersky D, Markov G, Tsel’movich V. Pure Iron and Other Magnetic Minerals in Meteorites. Solar Syst. Res. 2015. Vol. 49:61–71. [Cross Ref]

  • Poelchau MH, Kenkmann T. Feather Features: A Low-shock-pressure Indicator in Quartz. J. Geophys. Res. Solid Earth. 2011. Vol. 116:[Cross Ref]

  • Gratz A. Deformation in Laboratory-shocked Quartz. J. Non-Cryst. Solids. 1984. Vol. 67:543–558. [Cross Ref]

  • Bohor BF. Shocked Quartz and More; Impact Signatures in Cretaceous/Tertiary Boundary ClaysGlobal Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; Sharpton VL, Ward PD. Geological Society of America. 1990

  • Goltrant O, Cordier P, Doukhan J-C. Planar Deformation Features in Shocked Quartz; a Transmission Electron Microscopy Investigation. Earth Planet. Sci. Lett. 1991. Vol. 106:103–115. [Cross Ref]

  • Gratz AJ, Fisler DK, Bohor BF. Distinguishing Shocked from Tectonically Deformed Quartz by the use of the SEM and Chemical Etching. Earth Planet. Sci. Lett. 1996. Vol. 142:513–521. [Cross Ref]

  • French BM, Koeberl C. The Convincing Identification of Terrestrial Meteorite Impact Structures: What Works, what Doesn’t, and why. Earth Sci. Rev. 2010. Vol. 98:123–170. [Cross Ref]

  • Bunch T, Cohen AJ. Shock Deformation of Quartz from Two Meteorite Craters. Geol. Soc. Am. Bull. 1964. Vol. 75:1263–1266

  • Bunch TE. A Study of Shock-Induced Microstructures And Solid State Transformations of Several Minerals from Explosion Craters. University of Pittsburgh. 1966

  • Voorn M. A New Way to Confirm Meteorite Impact Produced Planar Features in Quartz: Combining Universal Stage and Electron Backscatter Diffraction Techniques. 2010

  • Huber MS, FerriÈRe L, Losiak A, Koeberl C. ANIE: A Mathematical Algorithm for Automated Indexing of Planar Deformation Features in Quartz Grains. Meteorit. Planet. Sci. 2011. Vol. 46:1418–1424. [Cross Ref]

  • Losiak A, Belcher CM, Plado J, Jõeleht A, Herd CDK, Kofman RS, Szokaluk M, Szczuciński W, Muszyński A, Wild EM, et al.. Small Impact Cratering Processes Produce Distinctive Charcoal Assemblages. Geology. 2022. Vol. 50:1276–1280. [Cross Ref]

  • Losiak A. Geochemical, Isotopic, and Petrographic Investigations of Rocks from the Bosumtwi Impact. 2013

  • Bischoff A, Stöffler D. Chemical and Structural Changes Induced by Thermal Annealing of Shocked Feldspar Inclusions in Impact Melt Rocks from Lappajärvi Crater, Finland. J. Geophys. Res. Solid Earth. 1984. Vol. 89:B645–B656. [Cross Ref]

  • Kaliwoda M, et al.. Quartz and cristobalite ballen aggregates formed by dehydration of shock-generated amorphous phases in impact melt rocks from the ries imapct structure (Germany)52nd Lunar and Planetary Science Conference; 2021. pp. 2445

  • Koeberl C, Ferrière L. Libyan Desert Glass area in Western Egypt: Shocked Quartz in Bedrock Points to a Possible Deeply Eroded Impact Structure in the Region. Meteorit. Planet. Sci. 2019. Vol. 54:2398–2408. [Cross Ref]

  • Longo G, Di Martino M. Remote sensing investigation of the tunguska explosion areaRemote Sensing for Agriculture, Ecosystems, and Hydrology IV. 2003. Vol. Volume 4879:p. 326–333

  • Longo G, Di Martino M, Anfinogenov J, Budaeva L, Kovrigin E, Andreev G. A New Unified Catalogue and a New Map of the 1908 Tree Fall in the Site of the Tunguska Cosmic Body Explosion. Asteroid-Comet Hazard. 2005. Vol. 2005:222–225

  • Ernstson K, Müller W, Gawlik-Wagner A, West A. The new world of impact cratering: The high-resolution digital terrain model and hydrocode modeling – The Saarland (Germany) low altitude touchdown airburst impact eventLunar and Planetary Science Conference; 2025

  • Shuvalov V. A Mechanism for the Production of Crater Rays. Meteorit. Planet. Sci. 2012. Vol. 47:262–267. [Cross Ref]

  • Pilkington M, Grieve RAF. The Geophysical Signature of Terrestrial Impact Craters. Rev. Geophys. 1992. Vol. 30:161–181. [Cross Ref]

  • Niyogi A, Pati JK, Patel SC, Panda D, Patil SK. Anthropogenic and Impact Spherules: Morphological Similarity and Chemical Distinction–A Case Study from India and its Implications. J. Earth Syst. Sci. 2011. Vol. 120:1043–1054

  • Houser LM, Ault AK, Newell DL, Evans JP, Shen F-A, Van Devener BR. Nanoscale Textural and Chemical Evolution of Silica Fault Mirrors in the Wasatch Fault Damage Zone, Utah, USA. Geochem. Geophys. Geosyst. 2021. Vol. 22:e2020GC009368. [Cross Ref]

  • Janssen C, Wirth R, Rybacki E, Naumann R, Kemnitz H, Wenk H-R, Dresen G. Amorphous Material in SAFOD Core Samples (San Andreas Fault): Evidence for Crush-origin Pseudotachylytes? Geophys. Res. Lett. 2010. Vol. 37:[Cross Ref]

  • Bohor B, Fisler D, Gratz AJ. Distinguishing between shock and tectonic lamellae with the SEMLunar and Planetary Science Conference; 1995. Vol. Volume 26. pp. 145

  • Anders MH, Laubach SE, Scholz CH. Microfractures: A Review. J. Struct. Geol. 2014. Vol. 69:377–394

  • Bunch TE, Hermes RE, Moore AM, Kennett DJ, Weaver JC, Wittke JH, DeCarli PS, Bischoff JL, Hillman GC, Howard GA, et al.. Very High-Temperature Impact Melt Products as Evidence for Cosmic Airbursts and Impacts 12,900 Years Ago. Proc. Natl. Acad. Sci. U. S. A. 2012. Vol. 109:E1903–E1912. [Cross Ref]

  • Moore AMT, Kennett JP, Napier WM, Bunch TE, Weaver JC, LeCompte MA, Victor Adedeji A, Kletetschka G, Hermes RE, Wittke JH, et al.. Abu Hureyra, Syria, Part 2: Additional Evidence Supporting the Catastrophic Destruction of this Prehistoric Village by a Cosmic Airburst ~12,800 Years Ago. Airburs. Crater. Imp. 2023. Vol. 1:[Cross Ref]

  • Yuen DA, Scruggs MA, Spera FJ, Zheng Y, Hu H, McNutt SR, Thompson G, Mandli K, Keller BR, Wei SS, et al.. Under the Surface: Pressure-Induced Planetary-Scale Waves, Volcanic Lightning, and Gaseous Clouds Caused by the Submarine Eruption of Hunga Tonga-Hunga Ha’apai Volcano. Earthq. Res. Adv. 2022. Vol. 2:100134. [Cross Ref]

  • Rakov VA, Uman MA. Lightning: Physics and Effects. Wiley Online Library. 2004

  • Boslough M. Airburst modelingHandbook of Cosmic Hazards and Planetary Defense. 2021. p. 1–24. [Cross Ref]

  • Rudnick RL, Gao S. Composition of the continental crustTreatise on Geochemistry. Rudnick RL. Elsevier. 2003. Vol. Volume 3:p. 1–64

  • Koeberl C. The Geochemistry and Cosmochemistry of Impacts. Treatise Geochem. 2003. Vol. 1:739–791. [Cross Ref]

  • Huber MS, Köberl C. Distribution of Meteoritic Material in Sudbury Ejecta. Meteorit. Planet. Sci. 2012. Vol. 47:A200

  • Wakita S, Johnson BC, Denton CA, Davison TM. Jetting During Oblique Impacts of Spherical Impactors. Icarus. 2021. Vol. 360:114365

  • Simonson BM, McDonald I, Shukolyukov A, Koeberl C, Reimold WU, Lugmair GW. Geochemistry of 2.63–2.49 Ga Impact Spherule Layers and Implications for Stratigraphic Correlations and Impact Processes. Precambrian Res. 2009. Vol. 175:51–76. [Cross Ref]

  • Koeberl C. Geochemistry and Petrography of Impact Breccias and Target Rocks from the 145 Ma Morokweng Impact Structure, South Africa. Geoch. Cosm. Acta. 2003. Vol. 67:1837–1862. [Cross Ref]

  • Goderis S, Tagle R, Belza J, Smit J, Montanari A, Vanhaecke F, Erzinger J, Claeys P. Reevaluation of Siderophile Element Abundances and Ratios Across the Cretaceous–Paleogene (K–Pg) Boundary: Implications for the Nature of the Projectile. Geochim. Cosm. Acta. 2013. Vol. 120:417–446. [Cross Ref]

  • Firestone RB, West A, Kennett JP, Becker L, Bunch TE, Revay ZS, Schultz PH, Belgya T, Kennett DJ, Erlandson JM, et al.. Evidence for an Extraterrestrial Impact 12,900 Years Ago that Contributed to the Megafaunal Extinctions and the Younger Dryas Cooling. Proc. Natl. Acad. Sci. U. S. A. 2007. Vol. 104:16016–16021. [Cross Ref]

  • Firestone RB, West A, Revay Z, Hagstrum JT, Belgya T, Hee SSQ, Smith AR. Analysis of the Younger Dryas Impact Layer. J. Sib. Fed. Univ. 2010. Vol. 1:30–62

  • Hagstrum JT, Firestone RB, West A, Weaver JC, Bunch TE. Impact-related Microspherules in Late Pleistocene Alaskan and Yukon “muck” Deposits Signify Recurrent Episodes of Catastrophic Emplacement. Sci. Rep. 2017. Vol. 7:16620[Cross Ref]

  • Israde-Alcantara I, Bischoff JL, Domínguez-Vázquez G, Li H-C, DeCarli PS, Bunch TE, Wittke JH, Weaver JC, Firestone RB, West A, et al.. Evidence from Central Mexico Supporting the Younger Dryas Extraterrestrial Impact Hypothesis. Proc. Natl. Acad. Sci. U. S. A. 2012. Vol. 109:E738–E747. [Cross Ref]

  • LeCompte MA, Goodyear AC, Demitroff MN, Batchelor D, Vogel EK, Mooney C, Rock BN, Seidel AW. Independent Evaluation of Conflicting Microspherule Results from Different Investigations of the Younger Dryas Impact Hypothesis. Proc. Natl. Acad. Sci. U. S. A. 2012. Vol. 109:E2960–2969. [Cross Ref]

  • LeCompte MA, West A, Adededji A, Demitroff M, Witwer T, Langenburg RA. The Bowser Road Mastodon and the Younger Dryas Impact Hypothesis, Appendix 3The Archaeological Recovery of the Bowser Road Mastodon, Orange County, NY. Gramly RM. Persimmon Press. 2017

  • Pino M, Abarzúa AM, Astorga G, Martel-Cea A, Cossio-Montecinos N, Navarro RX, Lira MP, Labarca R, LeCompte MA, Adedeji V, et al.. Sedimentary Record from Patagonia, Southern Chile Supports Cosmic-Impact Triggering of Biomass Burning, Climate Change, and Megafaunal Extinctions at 12.8 ka. Sci. Rep. 2019. Vol. 9:4413[Cross Ref]

  • Teller J, Boyd M, LeCompte M, Kennett J, West A, Telka A, Diaz A, Adedeji V, Batchelor D, Mooney C, et al.. A Multi-proxy Study of Changing Environmental Conditions in a Younger Dryas Sequence in Southwestern Manitoba, Canada, and Evidence for an Extraterrestrial Event. Quat. Res. 2019. Vol. 93:60–87. [Cross Ref]

  • Wu Y, Sharma M, LeCompte MA, Demitroff MN, Landis JD. Origin and Provenance of Spherules and Magnetic Grains at the Younger Dryas Boundary. Proc. Natl. Acad. Sci. U. S. A. 2013. Vol. 110:E3557–E3566. [Cross Ref]

  • Wittke JH, Weaver JC, Bunch TE, Kennett JP, Kennett DJ, Moore AMT, Hillman GC, Tankersley KB, Goodyear AC, Moore CR, et al.. Evidence for Deposition of 10 Million Tonnes of Impact Spherules Across Four Continents 12,800 y Ago. Proc. Natl. Acad. Sci. U. S. A. 2013. Vol. 110:E2088–E2097. [Cross Ref]

  • Golyeva A, Druzhinina O. Microbiomorphous Analysis in the Study of Late-Glacial Environment: Preliminary Results of the Study of the Kulikovo Section (Sambian Peninsula, Kaliningrad Region). Izvestia Ras. Geographical Series. 2024. Vol. 88:77–89

  • Glass BP, Simonson BM. Mesozoic spherule/impact ejecta layersDistal Impact Ejecta Layers. Berlin, Heidelberg: Springer. 2013. p. 245–320. [Cross Ref]

  • Glass BP, Simonson BM. Distal Impact Ejecta Layers: Spherules and More. Elements. 2012. Vol. 8:43–48. [Cross Ref]

  • Artemieva N, Shuvalov V. Atmospheric Shock Waves After Impacts of Cosmic Bodies Up to 1000 m in Diameter. Meteorit. Planet Sci. 2019. Vol. 54:592–608. [Cross Ref]

  • Van Ginneken M, Goderis S, Artemieva N, Debaille V, Decrée S, Harvey RP, Huwig KA, Hecht L, Yang S, Kaufmann FED, et al.. A Large Meteoritic Event Over Antarctica ca. 430 ka Ago Inferred from Chondritic Spherules from the Sor Rondane Mountains. Sci. Adv. 2021. Vol. 7:eabc1008. [Cross Ref]

  • Martel LM. Better Know A Meteorite Collection: Natural History Museum in London, United Kingdom. Planet. Sci. Res. Discov. Rep. 2009. Vol. 136:1–10

  • Artemieva NA, Shuvalov VV. From Tunguska to Chelyabinsk Via Jupiter. Annu. Rev. Earth Planet. Sci. 2016. Vol. 44:37–56. [Cross Ref]

  • Kletetschka G, Vyhnanek J, Kawasumiova D, Nabelek L, Petrucha V. Localization of the Chelyabinsk Meteorite from Magnetic Field Survey and GPS Data. IEEE Sens. J. 2015. Vol. 15:4875–4881. [Cross Ref]

  • Brown PG, Assink JD, Astiz L, Blaauw R, Boslough MB, Borovička J, Brachet N, Brown D, Campbell-Brown M, Ceranna L, et al.. A 500-Kiloton Airburst Over Chelyabinsk and an Enhanced Hazard from Small Impactors. Nature. 2013. Vol. 503:238–241. [Cross Ref]

  • Popova OP, Jenniskens P, Emel’yanenko V, Kartashova A, Biryukov E, Khaibrakhmanov S, Shuvalov V, Rybnov Y, Dudorov A, Grokhovsky VI, et al.. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization. Science. 2013. Vol. 342:1069–1073. [Cross Ref]

  • Kocherov A, Korochantsev A, Lorenz C, Ivanova M, Grokhovsky V. Recovery, laboratory preparation and current state of the main mass of the Chelyabinsk meteorite45th Annual Lunar and Planetary Science Conference; 2014. p. 2227

  • Molnár M, Ventura K, Švanda P, Štaffen Z, Rappenglück MA, Ernstson K. Chrudim-Pardubice: Evidence for a young meteorite impact strewn field in the Czech Republic48th Annual Lunar and Planetary Science Conference; 2017. p. 1920

  • Poßekel J, Molnár M, Ernstson K. The proposed meteorite impact event in the Czech Republic: Evidence strengthened by investigations with the digital terrain model53rd Lunar and Planetary Science Conference 2678; 2022. p. 1558

  • Ernstson K, Müller W, Gawlik-Wagner A. The Saarlouis semi crater structure: Notable insight into the Saarland (Germany) meteorite impact event achieved49th Lunar and Planetary Science Conference; 2018.

  • Ernstson K, Portz D, Müller W. Zhamanshinite-like black-glass melt rocks from the Saarland (Germany) meteorite impact site52nd Lunar and Planetary Science Conference; 2021. p. 1350

  • Siegel U, Rommelfangen J, Müller W, Michelbacher S, Ernstson K. Shatter cones in Litermont Quartzites: Saarlouis/Nalbach (Saarland, Germany) meteorite impact event strengthenedLunar and Planetary Science Conference; 2022.

  • Ernstson K, Bauer F, Hiltl M. A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany). Earth Sci. 2023. Vol. 12:26–40. [Cross Ref]

  • Ernstson K, Mayer W, Neumair A, Rappenglück B, Sudhaus D. The Chiemgau crater strewn field: Evidence of a Holocene large impact event in Southeast Bavaria, Germany. J. Sib. Fed. 2010. Vol. 3:72–103

  • Ernstson K, Poßekel J, Rappenglück MA. Near-ground airburst cratering: Petrographic and ground penetrating radar (GPR) evidence for a possibly enlarged Chiemgau impact event (Bavaria, SE-Germany)Lunar and Planetary Science Conference; 2020. p. 1231

  • Ernstson K, Sideris C, Liritzis I, Neumair A. The Chiemgau Meteorite Impact Signature of the Stöttham Archaeological Site (Southeast Germany). Mediterr. Archaeol. Archaeom. 2012. Vol. 12:249–259

  • Rappenglück B, Hiltl M, Ernstson K. Artifact-in-impactite: A new kind of impact rock. Evidence from the Chiemgau meteorite impact in southeast GermanyProceedings of the Modern Problems of Theoretical, Experimental, and Applied Mineralogy, Yushkin Readings, Syktyvkar, Russia, 7–10 December 2020; 2020. p. 365–367

  • Rappenglück B, Hiltl M, Ernstson K. Metallic artifact remnants in a shock-metamorphosed impact breccia: An extended view of the archeological excavation at Stöttham (Chiemgau, SE-Germany)50th Annual Lunar and Planetary Science Conference; 2019. p. 1334

  • Rappenglück MA, Ernstson K, Mayer W, Beer R, Benske G, Siegl C, Sporn R, Bliemetsrieder T, Schüssler U. The Chiemgau Impact Event in the Celtic Period: Evidence of a Crater Strewnfield and a Cometary Impactor Containing Presolar Matter. Impakt c/o Kord Ernstson. Chiemgau: 2004

  • Rappenglück B, Hiltl M, Poßekel J, Rappenglück MA, Ernstson K. People Experienced the Prehistoric Chiemgau Meteorite Impact – Geoarchaeological Evidence from Southeastern Germany: A Review. Mediterr. Archaeol. Archaeom. 2023. Vol. 23:1–29. [Cross Ref]

  • Rappenglück B, Hiltl M, Ernstson K. Exceptional evidence of a prehistoric meteorite impact at the archaeological site of Stöttham (Chiemgau, SE-Germany)Harmony and Symmetry: Celestial Regularities Shaping Human Culture. Proceedings of the SEAC 2018 Conference; Draxler S, Lippitsch ME, Wolfschmidt G. Hamburg: 2020. p. 116–125

  • Rappenglück B, Hiltl M, Ernstson K. The Chiemgau impact: Evidence of a latest bronze age/early iron age meteorite impact in the archaeological record, and resulting critical considerations of catastrophismBeyond Paradigms in Cultural Astronomy. González-García C, Frank RM, Sims LD, Rappenglück MA, Zotti G, Belmonte JA, Šprajc I. BAR Publishing. 2021. p. 57–64

  • Shumilova TG, Isaenko SI, Ulyashev VV, Makeev BA, Rappenglück MA, Veligzhanin AA, Ernstson K. Enigmatic Glass-Like Carbon from the Alpine Foreland, Southeast Germany: A Natural Carbonization Process. Acta Geol. Sin.-Engl. Ed. 2018. Vol. 92:2179–2200

  • Waldmann G, Herten F, Hiltl M, Ernstson K. The enigmatic Niederrhein (Germany) deposit: Evidence of a middle-pleistocene meteorite impact strewn field49th Annual Lunar and Planetary Science Conference; 2018. p. 1610

  • Ernstson K, Schulz-Hertlein G, Ernstson T, Poßekel J. A probable holocene meteorite impact crater strewn field in Lower Franconia (Germany): Evidence from digital terrain models and geophysical surveys (GPR, electrical imaging, geomagnetics)Poster, Proceedings of the AGU Fall Meeting; 2022

  • Ernstson K, Poßekel J, Kurtz J. The enigmatic sachsendorf bay structure (Oderbruch, Northeast Germany): Evidence of a pleistocene/holocene meteorite impact event12th Planetary Crater Consortium Meeting; Vol. 12. 2022. p. 2021

  • Ahokas H. Thirty-three Previously Unknown Meteoritic Craters of Diameter From 5 to 100 m in Western Kouvola, Finland From a Swarm of Impactors in the Holocene. Kave. 2023

  • Christie J, Ardell A. Substructures of Deformation Lamellae in Quartz. Geology. 1974. Vol. 2:405–408. [Cross Ref]

  • Christie J, Griggs D, Carter N. Experimental Evidence of Basal Slip in Quartz. J. Geol. 1964. Vol. 72:734–756. [Cross Ref]

  • Christie JM, Raleigh CB. The Origin of Deformation Lamellae in Quartz. Am. J. Sci. 1959. Vol. 257:385–407. [Cross Ref]

  • Gratz A, Nellis WJ, Christie JM, Brocious W, Swegle J, Cordier P. Shock Metamorphism of Quartz with Initial Temperatures −170 to + 1000° C. Phys. Chem. Minerals. 1992. Vol. 19:267–288. [Cross Ref]

  • Ernstson K. Meteorite impact spallation: From mega- to micro-scale. http://www.impact-structures.com/impact-educational/meteorite-impact-spallation-from-mega-to-micro-scale/2014

  • Ernstson K, Poßekel J. Enigmatic meteorite impact signature: Field evidence and ground penetrating radar (GPR) measurements suggest megascopic impact spallation featuresAGU Fall Meeting Abstracts. 2019. Vol. 2019:p. EP53F–2239

  • Dressler B, Reimold W. Terrestrial Impact Melt Rocks and Glasses. Earth Sci. Rev. 2001. Vol. 56:205–284. [Cross Ref]

  • Hermes RE, Wenk H-R, Kennett JP, Bunch TE, Moore CR, LeCompte MA, Kletetschka G, Adedeji AV, Langworthy K, Razink JJ, et al.. Microstructures in Shocked Quartz: Linking Nuclear Airbursts and Meteorite Impacts. Airbursts and Cratering Impacts. 2023. Vol. 1:1–40. [Cross Ref]

  • Moore AMT, Kennett JP, LeCompte MA, Moore CR, Li Y-Q, Kletetschka G, Langworthy K, Razink JJ, Brogden V, van Devener B, et al.. Abu Hureyra, Syria, Part 1: Shock-fractured quartz grains support 12,800-year-old Cosmic Airburst at the Younger Dryas Onset. Airbursts Cratering Impacts. 2023. Vol. 1:1–28. [Cross Ref]

  • Boslough M. Computational modeling of low-altitude airburstsAGU Fall Meeting. 2007.

  • Boslough M. Airburst modelingFirst International Workshop on Potentially Hazardous Asteroids Characterization, Atmospheric Entry and Risk Assessment, 7–9 July, 2015. NASA Ames Research Center. 2015

  • Collins GS, Lynch E, McAdam R, Davison TM. A Numerical Assessment of Simple Airblast Models of Impact Airbursts. Meteorit. Planet. Sci. 2017. Vol. 52:1542–1560. [Cross Ref]

  • Collins GS, Melosh HJ, Marcus R. Earth Impact Effects Program: A Web-based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteorit. Planet. Sci. 2005. Vol. 40:817–840. [Cross Ref]

  • Sekanina Z, Chodas PW, Yeomans DK. Tidal Disruption and the Appearance of Periodic Comet Shoemaker-Levy 9. Astron. Astrophys. 1994. Vol. 289:607–636

  • Crawford DA. Comet Shoemaker-Levy 9 Fragment Size Estimates: How Big Was the Parent Body? Ann. N. Y. Acad. Sci. 1997. Vol. 822:155–173. [Cross Ref]

  • Boslough M, Schultz P, Harris R. Hypervelocity airburst shower formation of the Pica Glass13th Planetary Crater Consortium Meeting; Vol. 13. 2022. p. 2021

  • Van Ginneken M, Harvey RP, Goderis S, Artemieva N, Boslough M, Maeda R, Gattacceca J, Folco L, Yamaguchi A, Sonzogni C, et al.. The Identification of Airbursts in the Past: Insights from the BIT-58 Layer. Earth Planet. Sci. Lett. 2024. Vol. 627:118562. [Cross Ref]

  • 联系我们 contact @ memedata.com