原文
| ||||||||||
| ||||||||||
![]() |
原始链接: https://news.ycombinator.com/item?id=43976895
Hacker News 上的一篇讨论围绕着知识图谱的实用性展开,特别是那些利用大型语言模型 (LLM) 来理解文档构建的知识图谱。人们对它们在简单的、定义明确的关系(例如公司结构)之外的有效性表示怀疑。评论者质疑生成的“三元组”(主语/谓语/宾语)是否有意义,以及由此产生的图谱是否比更简单的方法更有价值。 有人建议使用 Markdown 文件结合大型语言模型(如 Claude)和 Telegram API 来进行更简单的信息检索,作为替代方案。开放世界知识图谱的局限性,包括类似垃圾邮件的问题,也被强调出来。另一些人发现知识图谱在特定领域非常有用,例如安全领域,用于管理复杂的多对多关系(例如访问控制)。有人建议使用 Gemini 作为创建知识图谱的替代方案。 最后,有人断言基于图谱的信息检索已经过时,因为大型语言模型在内部创建它们的能力越来越强。但这受到了质疑,有人指出他们正在处理一个利基领域的法律文件,大型语言模型缺乏必要的相关信息。
| ||||||||||
| ||||||||||
![]() |
Like the example "CocoIndex supports Incremental Processing" becomes the subject/predicate/object triple (CocoIndex, supports, Incremental Processing)... so what? Are you going to look up "Incremental Processing" and get a list of related entities? That's not a term that is well enough defined to be meaningful across a variety of subjects. I can incrementally process my sandwich by taking small bites.
I guess you could actually expand "Incremental Processing" to some full definition. But then it's not really a knowledge graph because the only entity ever associated with that new definition will be CocoIndex, and you are back to a single sentence that contains the information, you've just pretended it's structured. ("Supports" hardly a well-defined term either!)
I can _kind of_ see how knowledge graphs can be used for limited relationships. If you want to map companies to board members, and board members to family members, etc. Very clearly and formally defined entities (like a person or company), with clearly defined relationships (board member, brother, etc). I still don't know how _useful_ the result is, but at least I can understand the validity of the model. But for everything else... am I missing something?
reply