低强度经颅聚焦超声杏仁核神经调控
Low-intensity transcranial focused ultrasound amygdala neuromodulation

原始链接: https://www.nature.com/articles/s41380-025-03033-w

本研究探讨了杏仁核在情绪和焦虑症中的作用,并研究了针对该脑区的新的神经调控技术。利用全国合并症调查复制数据的研究确定了这些疾病的患病率和合并症。研究发现,在各种精神疾病中,情绪处理过程中神经环路,特别是杏仁核内的神经环路,会发生中断。 认知行为疗法 (CBT) 和其他心理疗法在调节杏仁核活动和连接性、改善症状方面显示出前景。经颅磁刺激 (TMS) 和低强度经颅聚焦超声 (tFUS) 正在成为直接靶向杏仁核的无创技术。早期的 tFUS 研究证明了调节人类杏仁核活动、恐惧网络激活和连接性的潜力。虽然对这些技术的研 究仍在进行中,但初步结果表明,它们可能通过直接影响杏仁核功能来治疗情绪和焦虑症,具有良好的前景。其安全性和有效性仍在不断研究中。

Hacker News 最新 | 往期 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 低强度经颅聚焦超声杏仁核神经调控 (nature.com) 6 分 PaulHoule 52 分钟前 | 隐藏 | 往期 | 收藏 | 讨论 考虑申请 YC 2025 年夏季批次!申请截止日期为 5 月 13 日 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请 YC | 联系我们 搜索:

原文
  • Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  • Lamers F, Swendsen J, Cui L, Husky M, Johns J, Zipunnikov V, et al. Mood reactivity and affective dynamics in mood and anxiety disorders. J Abnorm Psychol. 2018;127:659–69.

    Article  PubMed  Google Scholar 

  • Mennin DS, Holaway RM, Fresco DM, Moore MT, Heimberg RG. Delineating components of emotion and its dysregulation in anxiety and mood psychopathology. Behav Ther. 2007;38:284–302.

    Article  PubMed  Google Scholar 

  • McTeague LM, Rosenberg BM, Lopez JW, Carreon DM, Huemer J, Jiang Y, et al. Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. Am J Psychiatry. 2020;177:411–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costafreda SG, Brammer MJ, David AS, Fu CH. Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res Rev. 2008;58:57–70.

    Article  PubMed  Google Scholar 

  • Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13–34.

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Kato M, Muramatsu T, Umeda S, Saito F, Kashima H. Unilateral amygdala lesions hamper attentional orienting triggered by gaze direction. Cereb Cortex. 2007;17:2593–2600.

    Article  PubMed  Google Scholar 

  • Lutas A, Kucukdereli H, Alturkistani O, Carty C, Sugden AU, Fernando K, et al. State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nat Neurosci. 2019;22:1820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Anderson KL, Leal SL, Shestyuk A, Gulsen G, Mnatsakanyan L, et al. Amygdala-hippocampal dynamics during salient information processing. Nat Commun. 2017;8:14413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci. 2016;19:1636–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, et al. Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nat Neurosci. 2021;24:1586–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inman CS, Hollearn MK, Augustin L, Campbell JM, Olson KL, Wahlstrom KL. Discovering how the amygdala shapes human behavior: from lesion studies to neuromodulation. Neuron. 2023;111:3906–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry. 2014;171:395–7.

    Article  PubMed  Google Scholar 

  • National Institute of Mental Health. Negative Valence Systems. https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/constructs/negative-valence-systems. Accessed March 31st, 2024.

  • Nord CL, Barrett LF, Lindquist KA, Ma Y, Marwood L, Satpute AB, et al. Neural effects of antidepressant medication and psychological treatments: a quantitative synthesis across three meta-analyses. Br J Psychiatry. 2021;219:546–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Felmingham K, Kemp A, Williams L, Das P, Hughes G, Peduto A, et al. Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol Sci. 2007;18:127–9.

    Article  PubMed  Google Scholar 

  • Shou H, Yang Z, Satterthwaite TD, Cook PA, Bruce SE, Shinohara RT, et al. Cognitive behavioral therapy increases amygdala connectivity with the cognitive control network in both MDD and PTSD. Neuroimage Clin. 2017;14:464–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, et al. Amygdala and insula connectivity changes following psychotherapy for posttraumatic stress disorder: a randomized clinical trial. Biol Psychiatry. 2021;89:857–67.

    Article  PubMed  Google Scholar 

  • Beutel ME, Stark R, Pan H, Silbersweig D, Dietrich S. Changes of brain activation pre- post short-term psychodynamic inpatient psychotherapy: an fMRI study of panic disorder patients. Psychiatry Res. 2010;184:96–104.

    Article  PubMed  Google Scholar 

  • Aupperle RL, Allard CB, Simmons AN, Flagan T, Thorp SR, Norman SB, et al. Neural responses during emotional processing before and after cognitive trauma therapy for battered women. Psychiatry Res. 2013;214:48–55.

    Article  PubMed  Google Scholar 

  • Fonzo GA, Ramsawh HJ, Flagan TM, Sullivan SG, Simmons AN, Paulus MP, et al. Cognitive-behavioral therapy for generalized anxiety disorder is associated with attenuation of limbic activation to threat-related facial emotions. J Affect Disord. 2014;169:76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Straub J, Plener PL, Sproeber N, Sprenger L, Koelch MG, Groen G, et al. Neural correlates of successful psychotherapy of depression in adolescents. J Affect Disord. 2015;183:239–46.

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Zhu H, Qiu C, Meng Y, Zhang Y, Shang J, et al. Group cognitive behavioral therapy modulates the resting-state functional connectivity of amygdala-related network in patients with generalized social anxiety disorder. BMC Psychiatry. 2016;16:198.

    Article  PubMed  PubMed Central  Google Scholar 

  • George MS, Post RM. Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression. Am J Psychiatry. 2011;168:356–64.

    Article  PubMed  Google Scholar 

  • Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol. 2007;24:31–38.

    Article  PubMed  Google Scholar 

  • Tik M, Woletz M, Schuler A, Vasileiadi M, Cash RFH, Zalesky A, et al. Acute TMS/fMRI response explains offline TMS network effects – an interleaved TMS-fMRI study. Neuroimage. 2022;267:119833.

    Article  PubMed  Google Scholar 

  • Sydnor VJ, Cieslak M, Duprat R, Deluisi J, Flounders MW, Long H, et al. Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Sci Adv. 2022;8:eabn5803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshel N, Keller CJ, Wu W, Jiang J, Mills-Finnerty C, Huemer J, et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology. 2020;45:1018–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackmore DG, Razansky D, Gotz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron. 2023;111:1174–90.

    Article  CAS  PubMed  Google Scholar 

  • Philip NS, Arulpragasam AR. Reaching for the unreachable: low intensity focused ultrasound for non-invasive deep brain stimulation. Neuropsychopharmacology. 2023;48:251–2.

    Article  PubMed  Google Scholar 

  • Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, et al. Ultrasound technologies for imaging and modulating neural activity. Neuron. 2020;108:93–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett. 2017;7:135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bystritsky A, Korb AS. A review of low-intensity transcranial focused ultrasound for clinical applications. Curr Behav Neurosci Rep. 2015;2:60–66.

    Article  Google Scholar 

  • Cain JA, Visagan S, Johnson MA, Crone J, Blades R, Spivak NM, et al. Real time and delayed effects of subcortical low intensity focused ultrasound. Sci Rep. 2021;11:6100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou T, Kochanowski BJ, Hayden A, Borron BM, Barbeiro MC, Xu J, et al. A low-intensity transcranial focused ultrasound parameter exploration study of the ventral capsule/ventral striatum. Neuromodulation. 2024;28:146–54.

    Article  PubMed  Google Scholar 

  • Peng X, Connolly DJ, Sutton F, Robinson J, Baker-Vogel B, Short EB, et al. Non-invasive suppression of the human nucleus accumbens (NAc) with transcranial focused ultrasound (tFUS) modulates the reward network: a pilot study. Front Hum Neurosci. 2024;18:1359396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou T, Deckersbach T, Guerin B, Sretavan Wong K, Borron BM, Kanabar A, et al. Transcranial focused ultrasound of the amygdala modulates fear network activation and connectivity. Brain Stimul. 2024;17:312–20.

    Article  PubMed  Google Scholar 

  • Kuhn T, Spivak NM, Dang BH, Becerra S, Halavi SE, Rotstein N, et al. Transcranial focused ultrasound selectively increases perfusion and modulates functional connectivity of deep brain regions in humans. Front Neural Circuits. 2023;17:1120410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17:322–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Kim H, Jung Y, Song IU, Chung YA, Yoo SS. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 2015;5:8743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016;17:68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee W, Kim HC, Jung Y, Chung YA, Song IU, Lee JH, et al. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016;6:34026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen L, Gallea C, Folloni D, Constans C, Jensen DEA, Ahnine H, et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife. 2019;8:e40541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry JF, et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron. 2019;101:1109–1116.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng K, Darmani G, Fomenko A, Xia X, Tran S, Nankoo J-F, et al. Induction of human motor cortex plasticity by theta burst transcranial ultrasound stimulation. Ann Neurol. 2022;91:238–52.

    Article  PubMed  Google Scholar 

  • Zhao Z, Ji H, Zhang C, Pei J, Zhang X, Yuan Y. Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice. Neuroimage. 2023;270:119952.

    Article  PubMed  Google Scholar 

  • Lukas M, Samuel P, Daniel S, Bryce DG, Gabrielle E, Sumasri K, et al. Transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus produces long-term depression of thalamocortical synapses in the adult visual cortex. J Neurosci. 2024;44:e0784232024.

    Article  Google Scholar 

  • Pasquinelli C, Hanson LG, Siebner HR, Lee HJ, Thielscher A. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies. Brain Stimul. 2019;12:1367–80.

    Article  PubMed  Google Scholar 

  • Legon W, Adams S, Bansal P, Patel PD, Hobbs L, Ai L, et al. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci Rep. 2020;10:5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, et al. Human studies of transcranial ultrasound neuromodulation: a systematic review of effectiveness and safety. Brain Stimul. 2022;15:737–46.

    Article  PubMed  Google Scholar 

  • Reznik SJ, Sanguinetti JL, Tyler WJ, Daft C, Allen JJB. A double-blind pilot study of transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among depressed participants. Neurol, Psychiatry Brain Res. 2020;37:60–66.

    Article  Google Scholar 

  • Mahoney JJ, Haut MW, Carpenter J, Ranjan M, Thompson-Lake DGY, Marton JL, et al. Low-intensity focused ultrasound targeting the nucleus accumbens as a potential treatment for substance use disorder: safety and feasibility clinical trial. Front Psychiatry. 2023;14:1211566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riis TS, Feldman DA, Kwon SS, Vonesh LC, Koppelmans V, Brown JR, et al. Noninvasive modulation of subcallosal cingulate and depression with focused ultrasonic waves. Biol Psychiatry. 2024;97:825–34.

    Article  PubMed  Google Scholar 

  • Mahdavi KD, Jordan SE, Jordan KG, Rindner ES, Haroon JM, Habelhah B, et al. A pilot study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder. J Psychiatr Res. 2023;168:125–32.

    Article  PubMed  Google Scholar 

  • He L, Wu DF, Zhang JH, Zheng S, Li Y, He W. Factors affecting transtemporal window quality in transcranial sonography. Brain Behav. 2022;12:e2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer ME, Spivak NM, Korb AS, Bystritsky A Design, development and operation of a Low Intensity Focused Ultrasound Pulsation (LIFUP) system for clinical use. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2021;68:54–64.

  • Wardenaar KJ, van Veen T, Giltay EJ, de Beurs E, Penninx BW, Zitman FG. Development and validation of a 30-item short adaptation of the Mood and Anxiety Symptoms Questionnaire (MASQ). Psychiatry Res. 2010;179:101–6.

    Article  PubMed  Google Scholar 

  • Schulte-van Maaren YW, Carlier IV, Zitman FG, van Hemert AM, de Waal MW, van Noorden MS, et al. Reference values for generic instruments used in routine outcome monitoring: the Leiden Routine Outcome Monitoring Study. BMC Psychiatry. 2012;12:203.

    Article  PubMed  PubMed Central  Google Scholar 

  • First MB, Williams JBW, Karg RS, Spitzer RL. Structured clinical interiew for DSM-5: research version. Washington, D.C.: American Psychiatric Association Publishing; 2015.

    Google Scholar 

  • Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166:1092–7.

    Article  PubMed  Google Scholar 

  • Wechsler D. Wechsler abbreviated scale of intelligence second edition. Bloomington, MN: Pearson Clinical Assessment; 2011.

    Google Scholar 

  • Fonzo GA, Ramsawh HJ, Flagan TM, Sullivan SG, Letamendi A, Simmons AN, et al. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders. Br J Psychiatry. 2015;206:206–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, et al. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 2009;168:242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, et al. PsychoPy2: experiments in behavior made easy. Behav Res Methods. 2019;51:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, et al. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56:1267–75.

    Article  PubMed  Google Scholar 

  • Watson D, Clark LA, Weber K, Assenheimer JS, Strauss ME, McCormick RA. Testing a tripartite model: II. Exploring the symptom structure of anxiety and depression in student, adult, and patient samples. J Abnorm Psychol. 1995;104:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Watson D. Differentiating the mood and anxiety disorders: a quadripartite model. Annu Rev Clin Psychol. 2009;5:221–47.

    Article  PubMed  Google Scholar 

  • Byllesby BM, Charak R, Durham TA, Wang X, Elhai JD. The underlying role of negative affect in the association between PTSD, major depressive disorder, and generalized anxiety disorder. J Psychopathol Behav Assess. 2016;38:655–65.

    Article  Google Scholar 

  • Čeko M, Kragel PA, Woo C-W, López-Solà M, Wager TD. Common and stimulus-type-specific brain representations of negative affect. Nat Neurosci. 2022;25:760–70.

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–219.

    Article  PubMed  Google Scholar 

  • Andersson JL, Jenkinson M, Smith S Non-linear registration, a.k.a. spatial normalisation. 2010.

  • Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870–88.

    Article  PubMed  Google Scholar 

  • Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–73.

    Article  CAS  PubMed  Google Scholar 

  • McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage. 2012;61:1277–86.

    Article  PubMed  Google Scholar 

  • IBM. IBM SPSS statistics for macintosh, version 28.0. Armonk, NY: IBM Corp; 2022.

    Google Scholar 

  • Chen G, Saad ZS, Britton JC, Pine DS, Cox RW. Linear mixed-effects modeling approach to FMRI group analysis. Neuroimage. 2013;73:176–90.

    Article  PubMed  Google Scholar 

  • Spisák T, Spisák Z, Zunhammer M, Bingel U, Smith S, Nichols T, et al. Probabilistic TFCE: a generalized combination of cluster size and voxel intensity to increase statistical power. Neuroimage. 2019;185:12–26.

    Article  PubMed  Google Scholar 

  • Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56:907–22.

    Article  PubMed  Google Scholar 

  • Chen AC, Etkin A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology. 2013;38:1889–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5:180063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59:12–19.

    Article  CAS  PubMed  Google Scholar 

  • Deng G, Jiang C, Li Y-X. Clinical utility of the mood and anxiety symptom questionnaire in a chinese sample of patients with pancreatic cancer. Gastroenterol Nurs. 2012;35:193–8.

    Article  PubMed  Google Scholar 

  • PitkÄNen A, Pikkarainen M, Nurminen N, Ylinen A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Ann N Y Acad Sci. 2000;911:369–91.

    Article  PubMed  Google Scholar 

  • Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage. 2009;45:614–26.

    Article  PubMed  Google Scholar 

  • Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage. 2021;237:118093.

    Article  PubMed  Google Scholar 

  • Yao S, Kendrick KM. Reduced homotopic interhemispheric connectivity in psychiatric disorders: evidence for both transdiagnostic and disorder specific features. Psychoradiology. 2022;2:129–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Peng Z, Wang X, Wang P, Li Q, Wang G, et al. Disrupted interhemispheric resting-state functional connectivity and structural connectivity in first-episode, treatment-naïve generalized anxiety disorder. J Affect Disord. 2019;251:280–6.

    Article  PubMed  Google Scholar 

  • Sun Y-W, Hu H, Wang Y, Ding W-N, Chen X, Wan J-Q, et al. Inter-hemispheric functional and anatomical connectivity abnormalities in traffic accident-induced PTSD: a study combining fMRI and DTI. J Affect Disord. 2015;188:80–88.

    Article  PubMed  Google Scholar 

  • Duprat RJ, Linn KA, Satterthwaite TD, Sheline YI, Liang X, Bagdon G, et al. Resting fMRI-guided TMS evokes subgenual anterior cingulate response in depression. Neuroimage. 2024;305:120963.

    Article  PubMed  Google Scholar 

  • Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin Neurophysiol. 2021;132:269–306.

    Article  PubMed  Google Scholar 

  • Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl). 2005;210:343–52.

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Mohlberg H, Bludau S, Zilles K. Julich-brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science. 2020;369:988.

    Article  CAS  PubMed  Google Scholar 

  • Fournier JC, Keener MT, Mullin BC, Hafeman DM, Labarbara EJ, Stiffler RS, et al. Heterogeneity of amygdala response in major depressive disorder: the impact of lifetime subthreshold mania. Psychol Med. 2013;43:293–302.

    Article  CAS  PubMed  Google Scholar 

  • Fournier JC, Keener MT, Almeida J, Kronhaus DM, Phillips ML. Amygdala and whole-brain activity to emotional faces distinguishes major depressive disorder and bipolar disorder. Bipolar Disord. 2013;15:741–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monk CS, Telzer EH, Mogg K, Bradley BP, Mai X, Louro HM, et al. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry. 2008;65:568–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonzo GA, Simmons AN, Thorp SR, Norman SB, Paulus MP, Stein MB. Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol Psychiatry. 2010;68:433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans KC, Wright CI, Wedig MM, Gold AL, Pollack MH, Rauch SL. A functional MRI study of amygdala responses to angry schematic faces in social anxiety disorder. Depress Anxiety. 2008;25:496–505.

    Article  PubMed  Google Scholar 

  • Phan KL, Fitzgerald DA, Nathan PJ, Tancer ME. Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol Psychiatry. 2006;59:424–9.

    Article  PubMed  Google Scholar 

  • Stein MB, Goldin PR, Sareen J, Zorrilla LTE, Brown GG. Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch Gen Psychiatry. 2002;59:1027–34.

    Article  PubMed  Google Scholar 

  • Sergerie K, Chochol C, Armony JL. The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2008;32:811–30.

    Article  PubMed  Google Scholar 

  • Hershenberg R, McDonald WM, Crowell A, Riva-Posse P, Craighead WE, Mayberg HS, et al. Concordance between clinician-rated and patient reported outcome measures of depressive symptoms in treatment resistant depression. J Affect Disord. 2020;266:22–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baandrup L, Rasmussen JØ, Mainz J, Videbech P, Kristensen S. Patient-reported outcome measures in mental health clinical research: a descriptive review in comparison with clinician-rated outcome measures. Int J Qual Health Care. 2022;34(Supplement_1):ii70–ii97.

    Article  PubMed  Google Scholar 

  • Pichardo S. BabelBrain: an open-source application for prospective modeling of transcranial focused ultrasound for neuromodulation applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2023;70:587–99.

    Article  PubMed  Google Scholar 

  • 联系我们 contact @ memedata.com