Chai-1:解码生命的分子相互作用
Chai-1: Decoding the molecular interactions of life

原始链接: https://www.chaidiscovery.com/blog/introducing-chai-1

简介:Chai-1是一个尖端的、多用途的人工智能模型,专为分子结构预测而设计。 该工具在药物发现的各个方面都超越了当前的行业标准。 它不仅可以预测蛋白质,还可以预测小分子、DNA、RNA、化学修饰等。 用户可以通过用户友好的网站访问 Chai-1,该网站提供商业和非商业选项。 对于那些希望将其用于个人项目的人,源代码也将被发布。 主要特点包括: - 在 PoseBusters 基准测试和 CASP15 数据集等标准化测试中优于其他模型。 - 与许多类似工具不同,无需多重序列比对 (MSA) 即可有效运行。 - 预测复杂蛋白质排列(多聚体)的卓越能力。 额外功能:当提供额外的实验数据时,Chai-1 可以显着提高其性能,在某些情况下可以观察到两位数的改进。 一个例子是“表位调节”,即使添加有限数量的接触或口袋残基细节也能显着改善抗体-抗原结构预测,促进人工智能驱动的抗体设计。 可用性:用户可以通过访问 [www.lab.chaidiscovery.com](http://www.lab.chaidiscovery.com) 或从 GitHub 存储库 [github.com/chaidiscovery] 下载来亲自尝试 Chai-1 /chai-lab](https://github.com/chaidiscovery/chai-lab)。 未来的工作:Chai-1 的创建者旨在通过开发更先进的人工智能模型来彻底改变生物学领域,这些模型能够预测和操纵生物分子(生命的基本单位)之间的相互作用。 进一步的进展将很快分享。 支持与协作:Chai-1 的开发得益于 Dimension、Thrive Capital、OpenAI、Conviction、Neo、Lachy Groom、Amplify Partners、Anna 和 Greg Brockman、Blake Byers、Fred Ehrsam、Julia 和 Kevin 等合作伙伴的支持 哈茨、威尔·盖布里克、大卫·弗兰克尔、R·马丁·查韦斯以及许多其他人。

生物制剂并不准确地称为“生物武器”。 与传统武器不同,生物学无法控制这些制剂的去向和影响。 生物制剂可能会无意中造成伤害,例如未洗的手上的细菌会迅速繁殖。 物理锁、太阳能、通用计算、印刷机、博世-哈伯工艺和核裂变等技术为好人和坏人都带来了好处,但它们的破坏性能力使得它们如果被滥用就会存在固有的风险。 在生物技术方面,这一点尤其令人担忧,因为与预防流行病相比,生产和传播新型病原体更加容易。 恐怖行动,如 9/11 袭击,主要目的是产生象征性影响,而不是造成大规模平民死亡。 然而,他们的成功造成了进一步的破坏。 分子生物学和病毒学对谁可以在线或在实验室环境中获取病原体的研究和法规存在限制风险。 像 AutoDock Vina 这样的对接软件虽然对于药物发现至关重要,但必须概括而不是简单地记住信息,并且需要仔细评估新分子的性能。 最近发布的 Chai-1 应该有助于评估这些计划的有效性。 相关测试集之间的高序列同一性对机器学习模型的准确性提出了挑战,需要在未来的进步中持续审查。
相关文章

原文

We’re excited to release Chai-1, a new multi-modal foundation model for molecular structure prediction that performs at the state-of-the-art across a variety of tasks relevant to drug discovery. Chai-1 enables unified prediction of proteins, small molecules, DNA, RNA, covalent modifications, and more.

The model is available for free via a web interface, including for commercial applications such as drug discovery. We are also releasing the model weights and inference code as a software library for non-commercial use.

A frontier model for biomolecular interactions

We tested Chai-1 across a large number of benchmarks, and found that the model achieves a 77% success rate on the PoseBusters benchmark (vs. 76% by AlphaFold3), as well as an Cα LDDT of 0.849 on the CASP15 protein monomer structure prediction set (vs. 0.801 by ESM3-98B).

Unlike many existing structure prediction tools which require multiple sequence alignments (MSAs), Chai-1 can also be run in single sequence mode without MSAs while preserving most of its performance. The model can fold multimers more accurately (69.8%) than the MSA-based AlphaFold-Multimer model (67.7%), as measured by the DockQ acceptable prediction rate. Chai-1 is the first model that’s able to predict multimer structures using single-sequences alone (without MSA search) at AlphaFold-Multimer level quality.

For more information, and a comprehensive analysis of the model, read our technical report.

A natively multi-modal foundation model

In addition to its frontier modeling capabilities directly from sequences, Chai-1 can be prompted with new data, e.g. restraints derived from the lab, which boost performance by double-digit percentage points. We explore a number of these capabilities in our technical report, such as epitope conditioning – using even a handful of contacts or pocket residues (potentially derived from lab experiments) doubles antibody-antigen structure prediction accuracy, making antibody engineering more feasible using AI.

Releasing the model for all

We are releasing Chai-1 via a web interface for free, including for commercial applications such as drug discovery. We are also releasing the code for Chai-1 for non-commercial use as a software library. We believe that when we build in partnership with the research and industrial communities, the entire ecosystem benefits.

Try Chai-1 for yourself by visiting lab.chaidiscovery.com, or run it from our GitHub repository at github.com/chaidiscovery/chai-lab.

What's next?

The team comes from pioneering research and applied AI companies such as OpenAI, Meta FAIR, Stripe, and Google X. Collectively, we have played pivotal roles in the advancement of research in AI for biology. The majority of the team has been Head of AI at leading drug discovery companies, and has collectively helped advance over a dozen drug programs. 

Chai-1 is the result of a few months of intense work, and yet we are only at the starting line. Our broader mission at Chai Discovery is to transform biology from science into engineering. To that end, we'll be building further AI foundation models that predict and reprogram interactions between biochemical molecules, the fundamental building blocks of life. We’ll have more to share on this soon.

We are grateful for the partnership of Dimension, Thrive Capital, OpenAI, Conviction, Neo, Lachy Groom, and Amplify Partners, as well as Anna and Greg Brockman, Blake Byers, Fred Ehrsam, Julia and Kevin Hartz, Will Gaybrick, David Frankel, R. Martin Chavez, and many others.

联系我们 contact @ memedata.com