BB(3, 4) > 确认(14)
BB(3, 4) > Ack(14)

原始链接: https://www.sligocki.com//2024/05/22/bb-3-4-a14.html

Pavel 发现了一台三态四符号图灵机 (TM),名为 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC,能够计算“阿克曼级”函数,并在磁带上显示大约 (2↑ⁱ₅5) + 14 个非零符号时停止。 这一重大发现超越了 Ack(14),即定义为 n↑n 的第 14 个阿克曼数。 这标志着在实验室条件之外达到如此复杂水平的 TM 的初始已知实例。 其最终停止配置包含无限零、3^{(2g₁₅3(0)+1)}、21⁶、1 和 Z>,精确地留下 (2g₁₅3(0)+18) 个非零符号或西格玛。 据报道,TM 于 2024 年 4 月下旬出土,并通过新的“归纳证明验证器”进行了验证。 该发现的创造者开始分享细节,从而进行进一步的分析和准确的评估。 所述TM基于基本规则进行操作,根据公式B(k,n,m)→B(k,0,gₗ⁢n(m))从一个状态转变到另一个状态。 这个复杂而单一的规则系统需要通过引理证明和定理发展的共同努力进行严格的数学检查。 巧合的是,研究人员还通过 Knuth 箭头表示法和基本算术确定了 gₗ(m) 函数的简单封闭形式评估:σ = 2g₁₅³(0) + 18 = (2↑ⁱ₅5) + 14。有趣的是,没有类似 Collat​​z 的规则 在这个看似基本但强大的机制中被发现。 这是否标志着 Collat​​z 主导的 TM 的黄昏还有待观察,但研究人员怀疑,由于选择性偏差,进一步的阿克曼级别的 TM 可能被隐藏起来。

本文讨论一个简单的长时间运行的图灵机程序,称为 BB(3,4)。 尽管运行时间较长,但该程序非常简单,仅具有三个状态(A、B、C),其行为类似于 C 编程语言中的 goto 目标。 每个状态仅与状态 B 通信,将控制权传回,而不是直接相互交互。 该程序表现出独特的特征,例如始终打印符号、从不产生空白以及每条指令都改变状态和颜色。 然而,这个特定的 BB(3,4) 计划的意义在学术界存在争议。 一些人认为它的功能与运行时间最长的类似尺寸机器的特性一致。 其他人则认为,它的特征代表了在广阔的搜索空间中最容易找到和证明的特征,这说明了“路灯效应”。 无论如何,由于较长图灵机的广泛复杂性,仍然不确定它们是否表现出完全的混乱,显示复杂的模式或在停止之前陷入更简单的配置。 BB(3,4) 记录持有者的详细信息包括三元组 (t',d, s'),表示从状态 s 到磁带头下的符号 t 的转换。 指令使机器写入不同的颜色,向左或向右移动,并相应地改变状态,最终在满足指定条件时达到“停止”状态Z。 BB(3,4) 的完整代码包含大约 64 位信息。 此外,作者提出了 BBWOHT(Busy Beaver With One Halting Transition)的概念,通过限制所考虑程序的范围来讨论潜在的优化策略。 通过关注 BBWOHT(3,4),可能需要更少的位,从而能够排除“无趣”的 BB(n,k) 程序。 然而,这个讨论似乎与简单的 BB(3,4) 长时间运行的图灵机程序本身的核心主题无关。
相关文章

原文

Pavel has found a 3-state 4-symbol TM which can compute an “Ackermann-level” function and halts with exactly

\[(2 \uparrow^{15} 5) + 14\]

non-zero symbols on the tape. With a number this large, Knuth up-arrow format is becoming a bit awkward, so we can approximate this bound as:

\[BB(3, 4) > Ack(14)\]

where \(Ack(14)\) is the 14th Ackermann number defined as:

\[Ack(n) = n \uparrow^n n\]

As far as I know, this is the first TM found “in the wild” that is able to simulate an Ackermann-level function.

The Machine

1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC

  0 1 2 3
A 1RB 3LB 1RZ 2RA
B 2LC 3RB 1LC 2RA
C 3RB 1LB 3LC 2RC

It halts with final configuration

\[0^\infty \;\; 3^{2 g_{15}^{3}(0) + 1} \;\; 2^{16} \;\; 1 \;\; \text{ Z> } \;\; 0^\infty\]

which leaves exactly

\[\sigma = 2 g_{15}^{3}(0) + 18 = (2 \uparrow^{15} 5) + 14\]

non-zero symbols on the tape. (The function \(g_k(m)\) will be defined below).

Attribution

This TM was discovered by Pavel Kropitz (@uni) and shared on Discord on 25 Apr 2024. His code was not able to specify a human-readable bound on the TM score and it was simply specified as Halt(SuperPowers(13)) indicating 13 layers of inductive rules needed to prove it. He began a validation of this result using my new “Inductive Proof Validator” (see discussion at end of article).

I completed this validation and was able to extract the precise definition of \(g_k^n(m)\) on 20 May 2024 (Discord link) and used that to get a bound of \(\sigma > 2 \uparrow^{15} 3\).

Matthew House (@LegionMammal978) discovered on 22 May 2024 (Discord link) the remarkably simple closed form evaluation:

\[g_k^n(0) = \frac{ 2 \uparrow^k (n+2) }{2} - 2\]

which led me to rewrite this article with exact values for \(\sigma\)!

Analysis

Let

\[B(k, n, m) = 0^\infty \;\; 3^{2m+1} \;\; 2^k \;\; \text{ A> } \;\; 1^n\]

then we can prove that

\[\begin{array}{lcl} 0^\infty \;\; \text{A>} \;\; 0^\infty & \xrightarrow{241} & B(16, 3, 0) \;\; 2 \;\; 0^\infty \\ B(k, n, m) & \to & B(k, 0, g_{k-1}^n(m)) & \text{if } k \ge 1 \\ B(k, 0, m) \;\; 2 & \xrightarrow{1} & 0^\infty \;\; 3^{2m+1} \;\; 2^k \;\; 1 \;\; \text{Z>} \\ \end{array}\]

where

\[\begin{array}{l} g_0(m) & = & m + 1 \\ g_{k+1}(m) & = & g_k^{2m+2}(0) \\ \end{array}\]

Proof by Double Induction

This TM is remarkably simple in the sense that its behavior can be almost completely described by one single rule:

\[B(k, n, m) \to B(k, 0, g_{k-1}^n(m))\]

but that rule is a whopper requiring double induction to prove!


Lemma 1: For all \(k \ge 1\):

\[3 \;\; 2^k \;\; \text{

Corollary 2: For all \(k \ge 1, m \ge 0\):

\[3^m \;\; 2^k \;\; \text{

Proofs left as an exercise to the reader.


Theorem 3: For all \(k \ge 1, n \ge 0, m \ge 0\):

\[B(k, n, m) \to B(k, 0, g_{k-1}^n(m))\]

Proof by Induction on \(k\):

  • Base Case (\(k = 1\))
    • Goal: \(\forall n,m \ge 0: B(1, n+1, m) \to B(1, 0, g_0^{n+1}(m))\)
    • Proof by induction on \(n\). Left as an exercise to the reader.
  • Induction Case
\[\begin{array}{lcl} B(k+1, n+1, m) & = & 0^\infty \;\; 3^{2m+1} \;\; 2^{k+1} \;\; \text{A>} \;\; 1^{n+1} \\ & \xrightarrow{1} & 0^\infty \;\; 3^{2m+1} \;\; 2^{k+1} \;\; \text{} \;\; 1^{2m+2} \;\; 3 \;\; 1^n \\ & = & B(k, 2m+2, 0) \;\; 3 \;\; 1^n \\ & \to & B(k, 0, g_k^{2m+2}(0)) \;\; 3 \;\; 1^n & \text{by Ind. Hyp. } H_k \\ & = & 0^\infty \;\; 3^{g_k^{2m+2}(0)} \;\; 2^k \;\; \text{A>} \;\; 3 \;\; 1^n \\ & \xrightarrow{1} & 0^\infty \;\; 3^{g_k^{2m+2}(0)} \;\; 2^{k+1} \;\; \text{A>} \;\; 1^n \\ & = & B(k+1, n, g_k^{2m+2}(0)) = B(k+1, n, g_{k+1}(m)) \\ & \to & B(k+1, 0, g_{k+1}^n(g_{k+1}(m))) & \text{by Ind. Hyp. } H_n \\ & = & B(k+1, 0, g_{k+1}^{n+1}(m)) \\ \end{array}\]

QED

Exact Values

Through what appears to be a remarkable series of coincidences, there is a relatively simple closed form evaluation of \(g_k\) using only Knuth up-arrows and arithmetic:

Theorem: For all \(k \ge 0, m \ge 0\):

\[2 g_{k+1}(m) + 4 = 2 \uparrow^k (2m+4)\]

(where we define \(a \uparrow^0 b = ab\))

Proof by Induction on \(k\):

\[\begin{array}{l} g_1(m) & = & g_0^{2m+2}(0) & = & 2m+2 \\ 2 g_1(m) + 4 & = & 2 (2m+2) + 4 & = & 4m + 8 & = & 2 \uparrow^0 (2m+4) \\ \end{array}\]
  • Inductive case: Assume \(\forall m \ge 0: 2 g_{k+1}(m) + 4 = 2 \uparrow^k (2m+4)\):
\[\begin{array}{l} 2 g_{k+1}(m) + 4 & = & 2 \uparrow^k (2m+4) \\ 2 g_{k+1}^n(m) + 4 & = & (2 \uparrow^k)^n (2m+4) \\ 2 g_{k+2}(m) + 4 & = & g_{k+1}^{2m+2}(0) = (2 \uparrow^k)^{2m+2} 4 = (2 \uparrow^k)^{2m+2} (2 \uparrow^k 2) \\ & = & 2 \uparrow^{k+1} (2m+4) \\ \end{array}\]

QED

Note: This depends upon the coincidence that \(2 \uparrow^k 2 = 4\) for all \(k\). If the parameters had been slightly different and we’d ended up with \((2 \uparrow^k)^{2m+2} 5\) above, I don’t think it would have been possible to get a closed form expression.

Corollary: For all \(k \ge 0, n \ge 0\):

\[2 g_k^n(0) + 4 = 2 \uparrow^k (n+2)\]

From which it follows directly that:

\[\sigma = 2 g_{15}^{3}(0) + 18 = (2 \uparrow^{15} 5) + 14\]

Permutations

\[\begin{array}{lcl} 0^\infty \;\; \text{B>} \;\; 0^\infty & \xrightarrow{86} & B(7, 3, 0) \;\; 2 \;\; 0^\infty \\ 0^\infty \;\; \text{C>} \;\; 0^\infty & \xrightarrow{20} & B(1, 3, 0) \;\; 2 \;\; 0^\infty \\ \end{array}\]

Therefore, we can see that if we switch to:

  • Starting in state B, the TM halts with a score of \(\sigma_B = 2 g_6^3(0) + 9 = (2 \uparrow^6 5) + 5\)
  • Starting in state C, the TM halts with a score of \(\sigma_C = 2 g_0^3(0) + 3 = (2 \uparrow^0 5) - 1 = 9\) (which it does at step 72).

This first permutation (start state B) is another top BB(3, 4) TM. Converted into TNF it is:

1RB3RB1LC2LA_2LA2RB1LB3RA_3LA1RZ1LC2RA

  0 1 2 3
A 1RB 3RB 1LC 2LA
B 2LA 2RB 1LB 3RA
C 3LA 1RZ 1LC 2RA

Not Collatz

One interesting thing about this TM is how surprisingly simple it is. For example, the fact that it does not have any Collatz-like rules (rules which act differently depending on the remainder of some value). Is this the end of the domination of Collatz-like TMs? It is far too early to know, but my guess is that there are Collatz-like Ackermann-level TMs waiting for us, but we are not seeing them right away because of selection bias. Perhaps this was the first Ackermann-level TM found because it is simple enough to be proven halting without having to implement modular arithmetic on Ackermann-level functions.

Inductive Proof Validator

This TM was the perfect test case for an “inductive proof” validator I am currently developing. The goal of this project is to develop a standardized certificate format for “inductive proofs” (an umbrella term for all the sort of forward-reasoning, rule-based analyses that are ubiquitous on this blog). The idea is that anyone with an “inductive decider” could write out their rules in this format and then this validator can check these proofs. The system is still very clunky and not ready for prime time, but I have been able (with a little elbow grease) to use it to prove the behavior of many TMs including this one.

联系我们 contact @ memedata.com