动画人工智能
Animated AI

原始链接: https://animatedai.github.io/

在机器学习中,我们使用卷积神经网络来分析图像或视觉数据。 此过程的基本算法涉及在输入图像的特定部分应用称为内核的过滤器,从而产生称为特征图的输出图。 这种技术称为卷积。 为了避免丢失输入图像边缘或角落的重要细节,可以在卷积运算期间在每个内核周围添加填充。 换句话说,在原始帧之外添加额外的像素将确保在执行计算时不会丢失任何信息。 在卷积运算期间,我们还有步幅等选项,我们不是在每个像素上移动,而是在它们之间采取更大的步长,从而导致下采样。 通过各种分组方法,例如仅同时关注一个特定通道的深度卷积或可分离卷积,我们将传统的卷积方法分为两个单独的层,包括 2D 滤波,然后应用逐点卷积,我们获得了更高的计算效率,而不会损失太多精度。 此外,像素混洗等技术使我们能够对输入图像进行重新采样或通过巧妙的数学运算改变其分辨率,从而避免昂贵的图像转换。 更好地理解这些概念使我们能够为模型选择适当的参数,从而提高涉及计算机视觉的任务的性能。 这些想法有助于创建更高效​​、更有效的深度神经网络架构,促进从医疗诊断到自动驾驶技术等领域的众多实际应用。 上述概念属于卷积神经网络的范畴,卷积神经网络是处理大量复杂数据集时的流行选择。

本次讨论中介绍的网站提供了与流行的深度学习概念相关的信息丰富的动画可视化。 然而,在充分理解这些图像之前,人们可能需要有关神经网络的先验知识。 提供的链接为理解人工智能和机器学习概念的基础知识提供了额外的资源。 考虑到在没有任何相应数字参考的情况下呈现抽象数学概念所固有的局限性,该站点的名称可能会被修改。 尽管如此,矩阵代数在提供这些概念的几何表示时仍然很有价值。 尽管动画支持可能有助于更好地理解,但最终,其功效背后的“为什么”问题需要在基本课程之外进行进一步探索。
相关文章

原文

I'm creating animations and instructional videos about neural networks. Check out my Patreon and YouTube channel!

Convolution

The Basic Algorithm

Watch the companion YouTube video: Fundamental Algorithm of Convolution in Neural Networks. The process of convolution in neural networks with a 3x3 kernel size

Padding

Companion video: Convolution Padding - Neural Networks
The process of convolution in neural networks with a 3x3 kernel size The process of convolution in neural networks with a 3x3 kernel size and a padding of 'SAME', i.e., 1 pixel on the top, bottom, left, and right.
No Padding AKA "Valid" [1,1,1,1] Padding AKA "Same"

Stride

Companion video: Stride - Convolution in Neural Networks
Stride 1Stride 2
The process of convolution in neural networks with a 3x3 kernel size The process of convolution in neural networks with a 3x3 kernel size and a stride of 2x2
No Padding AKA "Valid"; Stride of 1 No Padding AKA "Valid"; Stride of 2
The process of convolution in neural networks with a 3x3 kernel size, a stride of 2x2, and a padding of 'SAME', i.e., 1 pixel on the top, bottom, left, and right.
[1,1,1,1] Padding AKA "Same"; Stride of 1 [1,1,1,1] Padding AKA "Same"; Stride of 2

Groups, Depthwise, and Depthwise-Separable

Watch the companion YouTube video: Groups, Depthwise, and Depthwise-Separable Convolution (Neural Networks).
The process of convolution in neural networks with a 3x3 kernel size The process of convolution in neural networks with a 3x3 kernel size and 2 groups
1 Group 2 Groups
The process of convolution in neural networks with a 3x3 kernel size and 8 groups making it a depthwise convolution A depthwise convolution layer followed by a pointwise convolution layer making the combined process a depthwise-separable convolution
Depthwise (8 Groups) Depthwise-separable (8 Groups followed by pointwise)

Pixel Shuffle

Watch the companion YouTube video: Pixel Shuffle - Changing Resolution with Style

2x2 Block Size

Pixel shuffle animation in neural networks with a block size of 2x2 Pixel unshuffle animation in neural networks with a block size of 2x2
2x2 Pixel Shuffle 2x2 Pixel Unshuffle
Pixel shuffle and unshuffle in neural networks with a block size of 2x2 looping animation
2x2 Pixel Shuffle/Unshuffle Loop

3x3 Block Size

Pixel shuffle animation in neural networks with a block size of 3x3 Pixel unshuffle animation in neural networks with a block size of 3x3
3x3 Pixel Shuffle 3x3 Pixel Unshuffle
Pixel shuffle and unshuffle in neural networks with a block size of 3x3 looping animation
3x3 Pixel Shuffle/Unshuffle Loop

Licensed under the MIT License

联系我们 contact @ memedata.com