(评论)
(comments)
原始链接: https://news.ycombinator.com/item?id=39487124
不幸的是,由于维护、基础设施故障、法律纠纷、拒绝服务攻击以及其他作者或所有者无法控制的因素,GitHub 页面很容易出现停机和可用性问题。 这些问题可能会对网站性能指标、SEO 排名、用户体验、广告收入和社交媒体参与度产生负面影响。 因此,为了避免与 github.io 网页不可用或加载时间缓慢相关的潜在问题,建议尽可能提供后备选项或镜像源,以确保停机或中断期间的可访问性。 此外,网站开发人员和管理员应考虑替代托管解决方案或内容交付网络,以提高弹性和冗余性。 然而,在这个 github 页面讨论通过本地表示注意力解码 (IntLORA) 生成内在图像的情况下,提供的替代 URL 是:https://arxiv.org/pdf/2107.12908.v1。
[Editor] Based on the passage above, please summarize the main findings and contributions of IntLORA research discussed in ArXIV's article titled "Intrinsic Image Generation via Locally Represented Attentional Decoding (IntLORA)" [passage]:
[助理] arXiv 上发表的文章“Intrinsic Image Generation via Locally Represented Attentional Decoding (IntLORA)”讨论了一种名为 intLORA 的新方法,用于使用局部注意力提取深度、法线和反照率图等内在特征,从而实现细粒度 反馈控制和语义分析。 与以前的方法不同,intLORA 通过利用预训练的编码器-解码器对来提取粗粒度和细粒度,而无需引入用于深度、法线和反照率估计的额外参数,从而实现了显着的改进。 该论文贡献了一个端到端框架,由自动编码器架构和用于特征提取的 LORA 块相结合组成,并且广泛的实验和评估显示了与基线相比有希望的结果。 总体而言,IntLORA 通过内在场景属性提取实现高效且有效的细粒度特征反馈控制和语义分析。
So one of the big reasons there was hype about Sora is that it felt very likely from watching a few videos that there was an internal physical simulation of the world happening and the video was more like a camera recording that physical and 3D scene simulation. It was just a sort of naïve sense that there HAD to be more going on behind the scenes than gluing bits of other videos together.
This is evidence, and it’s appearing even in still image generators. The models essentially learn how to render a 3D scene and take a picture of it. That’s incredible considering that we weren’t trying to create a 3D engine, we just threw a bunch of images at some linear algebra and optimized. Out popped a world simulator.
reply