奇点将在星期二发生。
The Singularity will occur on a Tuesday

原始链接: https://campedersen.com/singularity

## 社会奇点已至 尽管广泛讨论, “奇点” 并非关于机器超越人类智能,而是关于*人类如何应对*人工智能加速的进步。 对五个关键人工智能指标——MMLU分数、智能成本、发布间隔、涌现的研究论文和代码共享——的分析揭示了一个令人惊讶的真相:只有一项显示出双曲线增长,表明真正的奇点——即*人类发现和撰写关于新的AI行为的速度*。 虽然人工智能的能力本身正在线性提升,但人类对它们的关注和焦虑却在加速上升。 这种“社会奇点”,预计将在**2034年1月**左右达到顶峰,并非关于机器变得超级智能,而是关于我们集体处理和应对快速变化的能力不足。 这已经体现在劳动力市场 disruption、机构失灵(如监管滞后)、资本集中、对人工智能信任的侵蚀以及政治重新调整中。 作者认为,这些 disruption 并非在等待先进的人工智能,而是*因为*人们对未来发展轨迹的认知而正在发生。 关键要点:奇点不是一个技术事件,而是人类应对加速变化的能力崩溃,并且它已经开始。

一个黑客新闻的讨论围绕着一篇博客文章,该文章预测“奇点”——人工智能超越人类智能的假设时刻——将发生在星期二。然而,对话很快从*何时*发生奇点转移到*如何*发生奇点。 一个关键评论认为,关键点不是人工智能的能力,而是人类在人工智能发展过程中集体响应和做出决策的能力不足,凸显了社会和制度结构的崩溃。 其他评论提供了一些幽默的插曲(《银河系漫游指南》的引用,对2038年Unix日期滚动的担忧),并争论了指数增长与多项式增长在AGI发展中的数学意义。总体基调表明,人们关注的是人工智能对社会的冲击,而不是纯粹的技术里程碑。
相关文章

原文
Always has been astronaut meme

"Wait, the singularity is just humans freaking out?" "Always has been."

Everyone in San Francisco is talking about the singularity. At dinner parties, at coffee shops, at the OpenClaw meetup where Ashton Kutcher showed up for some reason. The conversations all have the same shape: someone says it's coming, someone says it's hype, and nobody has a number.

This seems like the wrong question. If things are accelerating (and they measurably are) the interesting question isn't whether. It's when. And if it's accelerating, we can calculate exactly when.

I collected five real metrics of AI progress, fit a hyperbolic model to each one independently, and found the one with genuine curvature toward a pole. The date has millisecond precision. There is a countdown.

(I am aware this is unhinged. We're doing it anyway.)

The Data

Five metrics, chosen for what I'm calling their anthropic significance (anthropic here in the Greek sense ("pertaining to humans"), not the company, though they appear in the dataset with suspicious frequency):

  1. MMLU scores: the SAT for language models
  2. Tokens per dollar: cost collapse of intelligence (log-transformed, because the Gemini Flash outlier spans 150× the range otherwise)
  3. Frontier release intervals: shrinking gap between "holy shit" moments
  4. arXiv "emergent" papers (trailing 12mo): field excitement, measured memetically
  5. Copilot code share: fraction of code written by AI