涡流网络:基于流体动力学的神经网络
VortexNet: Neural network based on fluid dynamics

原始链接: https://github.com/samim23/vortexnet

这个仓库提供了VortexNet概念的简化、教育性实现——在神经网络中使用流体动力学原理。它展示了基于PDE的涡旋层如何用于构建神经网络架构,特别是用于图像处理的自编码器。 包含两个脚本:`vortexnet_mnist.py`演示了在MNIST数据集上使用VortexNet自编码器,会自动下载数据。`vortexnext_image.py`是针对自定义图像数据集的更高级版本,需要将图像放在`my_data/`目录中,并配置好`config_image.yaml`文件。 这段代码旨在作为学习工具,*并非*一个生产就绪的流体求解器。用户需要Python 3.8+,并且可以通过`pip install torch torchvision matplotlib pyyaml scikit-learn seaborn tensorboard`安装依赖项。训练进度可以使用TensorBoard监控,输出保存到指定的输出目录。

Hacker News新帖 | 过去 | 评论 | 提问 | 展示 | 工作 | 提交登录 VortexNet:基于流体动力学的神经网络 (github.com/samim23) 41 分,由 vegax87 1 天前发布 | 隐藏 | 过去 | 收藏 | 2 条评论 blamestross 1 天前 [–] 他们实际上没有展示任何结果。任何类型的。 我有一些闲置的计算资源,正在这里测试一下: https://colab.research.google.com/drive/1XL91kdwMWQQf1xu1_zS... 我正在发布之前它完成,请注意你需要刷新页面才能看到进度。最终应该会有图片显示从样本中重建的结果。回复 vexgax87 16 小时前 | 父评论 [–] 你应该去 https://news.ycombinator.com/user?id=samim 提问 考虑申请 YC 2026 冬季批次!申请截止日期为 11 月 10 日 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请 YC | 联系 搜索:
相关文章

原文

This repository contains toy implementations of the concepts introduced in the research paper VortexNet: Neural Computing through Fluid Dynamics. These examples demonstrate how PDE-based vortex layers and fluid-inspired mechanisms can be integrated into neural architectures, such as autoencoders for different datasets.

Note: These are toy prototypes for educational purposes and are not intended as fully optimized or physically precise fluid solvers.

  • vortexnet_mnist.py:
    A demonstration script for building and training a VortexNet Autoencoder on the MNIST dataset.
  • vortexnext_image.py:
    An advanced script for building and training a VortexNet Autoencoder on custom image datasets with enhanced features like data augmentation and latent space interpolation.
git clone https://github.com/samim23/vortexnet.git
cd vortexnet

Ensure you have Python 3.8+ installed. Install the required Python packages using pip:

pip install torch torchvision matplotlib pyyaml scikit-learn seaborn tensorboard
  • MNIST Dataset:
    The MNIST dataset will be automatically downloaded by vortexnet_mnist.py if not already present.

  • Custom Image Dataset:
    For vortexnext_image.py, place your images (JPEG, PNG, or JPEG formats) inside the my_data/ directory.

a. VortexNet MNIST Autoencoder (vortexnet_mnist.py)

This script builds and trains a VortexNet Autoencoder on the MNIST dataset.

Usage:

python3.11 vortexnet_mnist.py

b. VortexNet Image Autoencoder (vortexnext_image.py)

This advanced script builds and trains a VortexNet Autoencoder on custom image datasets with enhanced features.

Usage:

python3.11 vortexnext_image.py --config config_image.yaml
  • Configuration Files:
    Ensure the configuration file (config_image.yaml) is properly set up before running the scripts.

  • Output Directory:
    All outputs, including logs, reconstructed images, and model checkpoints, are saved in the output_dir specified in the respective configuration files.

  • TensorBoard:
    For monitoring training progress, you can launch TensorBoard pointing to the output_dir

联系我们 contact @ memedata.com